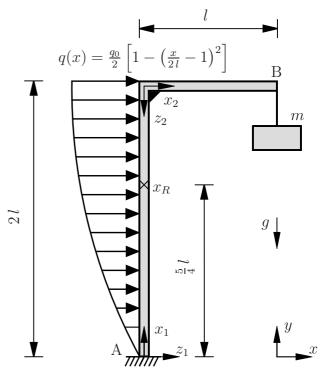
Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel

Prof. Dr.-Ing. J. Mosler

Vorname:


Nachname:

Matr.-Nr.: _____

Aufgabe 1 (Seite 1 von 4)

Das nebenstehende System besteht aus einem dehnstarren Rahmen (Biegesteifigkeit EI), dessen Ecke als biegestarr anzunehmen ist. Der Rahmen ist als masselos zu betrachten. Das System ist in Punkt A fest eingespannt. Am Punkt B ist eine Masse m durch ein Seil mit dem Rahmen verbunden. Eine weitere Last ist durch eine quadratische Streckenlast $q(x) = \frac{q_0}{2} \left[1 - \left(\frac{x}{2l} - 1\right)^2\right]$ am vertikalen Abschnitt des Rahmens gegeben. Nehmen Sie an, dass für die aus der Masse resultierenden Kraft $mg = q_0 l$ gilt.

Hinweis: Der Kraftangriffspunkt der resultierenden Streckenlast liegt bei $x_R = \frac{5}{4}l$ entlang der positiven x_1 Achse.

a)

Geben Sie die **dynamischen** Randbedingungen an den Punkten A und B an, die zur eindeutigen Bestimmung der Biegeline erforderlich sind. Dafür wurden die in positive x_1 -z₁-Koordinatenrichtung angenommenen Lagerreaktionen in Punkt A bereits zu $A_{x_1} = q_0 l$, $A_{z_1} = -\frac{2}{3} q_0 l$ und $M_A = \frac{11}{6} q_0 l^2$ bestimmt. (2,0 Punkte)

TU Dortmund	Vorname:
Fakultät Maschinenbau	Nachname:
Institut für Mechanik Prof. DrIng. A. Menzel	MatrNr.:
Prof. DrIng. J. Mosler	WattIVI
Aufgabe 1 (Seite 2 von 4)	
	and- und Übergangsbedingungen an, die zur eindeu- (z_i) erforderlich sind. Kennzeichnen Sie die Bereiche zes. (2,0 Punkte)

Berechnen Sie die Funktion der Biegelinie $w_2(x_2)$ des Rahmens im zweiten Abschnitt $0 \le x_2 \le l$ ohne die dabei auftretenden Konstanten näher zu spezifizieren. Geben Sie dazu nachfolgend die wichtigsten Zwischenschritte sowie das endgültige Ergebnis an. Es ist darauf zu achten, dass der Lösungsweg schlüssig und vollständig dargestellt wird. (2,0 Punkte)

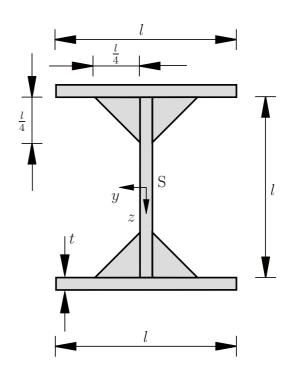
THE .	Vorname:
TU Dortmund	
Fakultät Maschinenbau Institut für Mechanik	Nachname:
Prof. DrIng. A. Menzel	MatrNr.:
Prof. DrIng. J. Mosler	
Aufgabe 1 (Seite 3 von 4)	
Lösung zu Aufgabenteil a):	
Sie dafür das vorgegebene, globale x-y-Koor	$u_x + u_y^m e_y$, welche die Masse m erfährt. Nutzen dinatensystem. Drücken Sie die Verschiebung $w_2(x_2)$ aus, welche als bekannt anzunehmen (1,5 Punkte)
SHIG.	(1,0 1 unkte)
$u_x^m =$	
$u_y^m =$	

Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel Prof. Dr.-Ing. J. Mosler

Vorname:	

Nachname:

Matr.-Nr.: _____


Aufgabe 1 (Seite 4 von 4)

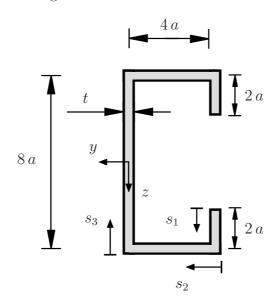
b)

Gegeben ist die Geometrie eines dünnwandigen Doppel-T-Trägers, welcher durch vier identische, rechtwinklige Dreiecke verstärkt wurde. Der Träger besitzt eine konstante Profildicke $t \ll l$. Die weiteren Abmessungen sind der Zeichnung zu entnehmen.

Hinweis: Die Flächenträgheitsmomente für ein rechtwinkliges Dreieck mit Katheten g und h und der y-Achse parallel zur Grundseite g sind:

$$I_y = \frac{g h^3}{36}$$
, $I_z = \frac{h g^3}{36}$, $I_{yz} = -\frac{g^2 h^2}{72}$.

Bestimmen Sie das Flächenträgheitsmoment I_y des I-Trägers bezüglich des gegebenen y-z-Schwerpunktkoordinatensystems in Abhängigkeit von l und t. Fassen Sie die Terme nicht zusammen. (2,5 Punkte)


 $I_y =$

Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel Prof. Dr.-Ing. J. Mosler

Vorname:	
Nachname:	
MatrNr.:	

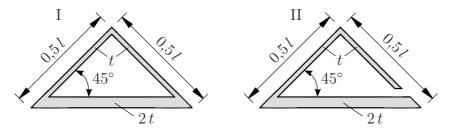
Aufgabe 2 (Seite 1 von 5)

In dem unten dargestellten dünnwandigem Profil $(t \ll a)$ sei die Querkraft Q_z im Schubmittelpunkt in z-Richtung wirksam.

a) Berechnen Sie die statischen Momente $S_{\rm I}(s_1)$ und $S_{\rm II}(s_2)$ des Profils. (2,0 Punkte)

$$S_{\rm I}(s_1) =$$

$$S_{\rm II}(s_2) =$$


TU Dortmund	Vorname:
Fakultät Maschinenbau	Nachname:
Institut für Mechanik Prof. DrIng. A. Menzel	MatrNr.:
Prof. DrIng. J. Mosler	
Aufgabe 2 (Seite 2 von 5)	
b)	
Leiten Sie eine Bedingung für die Querkratzul, welche aus der Querkraft Q_z folgt, nich trägheitsmoment sowie das statische Mor	aft Q_z her, sodass die zulässige Schubspannung in überschritten wird. Sie brauchen das Flächennent dabei nicht explizit einzusetzen, sondern Form $S_i(s_i = \bullet)$ anzugeben. (1,0 Punkte)
c)	
Nennen Sie zwei Maßnahmen um die zuläs des Profils gleich bleiben.	sige Querkraft zu erhöhen. Dabei muss die Höhe (1,0 Punkte)

TU Dortmund	Vorname:
10 Bortinana	
Fakultät Maschinenbau	Nachname:
Institut für Mechanik	
Prof. DrIng. A. Menzel	MatrNr.:

Aufgabe 2 (Seite 3 von 5)

Prof. Dr.-Ing. J. Mosler

Nachfolgend sollen nun die zwei dargestellten dünnwandigen Profile $(t \ll l)$ hinsichtlich Torsionsbelastungen untersucht werden. Das Profil I ist durchgehend, während das Profil II geschlitzt ist.

d) Berechnen Sie für beide Profile das Torsionswiderstandsmoment. (2,0 Punkte)

$$W_{\mathrm{T}}^{\mathrm{I}} =$$

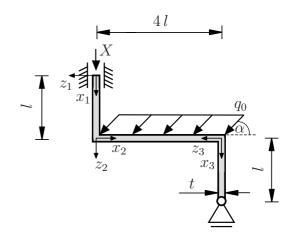
$$W_{\mathrm{T}}^{\mathrm{II}} =$$

TH Dartaria d	Vorname:
TU Dortmund	
Fakultät Maschinenbau Institut für Mechanik	Nachname:
Prof. DrIng. A. Menzel	MatrNr.:
Prof. DrIng. J. Mosler	
Aufgabe 2 (Seite 4 von 5)	
10l betrachtet, welche mit einem konst	nander unabhängige Balken mit einer Länge von anten Torsionsmoment belastet werden. Der erste
Profilquerschnitt II. Berechnen Sie die	en Profilquerschnitt I und der zweite Balken den nötigen Torsionsmomente $M_{\rm T}^{\rm I}$ und $M_{\rm T}^{\rm II}$, wenn die nder verdreht werden. Der Schubmodul G beider (2,5 Punkte)

TU Dortmund	Vorname:
Fakultät Maschinenbau Institut für Mechanik	Nachname:
Prof. DrIng. A. Menzel Prof. DrIng. J. Mosler	MatrNr.:
Aufgabe 2 (Seite 5 von 5)	
Sie sollen nun einen rechteckig	gen Profilquerschnitt auslegen.
tragen und das Torsionswiders Kantenlängen auf das Torsions	ngen a und b wählen, wenn der Umfang des Profils $4l$ bestandsmoment maximal sein soll? Wie sieht der Einfluss der swiderstandsmoment aus, wenn das Profil geschlitzt ist? Beserechnungen sind hierbei nicht notwendig. (1,5 Punkte)

TU Dortmund	Vorname:
Fakultät Maschinenbau Institut für Mechanik Prof. DrIng. A. Menzel Prof. DrIng. J. Mosler	Nachname:
Aufgabe 3 (Seite 1 von 6) a) Das nebenstehende, statisch unbestimmte Rahmensystem (Biegesteifigkeit EI , Dehn- steifigkeit EA) ist durch eine konstante Streckenlast mit dem Betrag q_0 belastet. Die Streckenlast greift am horizontalen Rahmenabschnitt unter dem Winkel α an. Die Lagerung des Rahmens ist der Skizze zu entnehmen.	$ \begin{array}{c c} A & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ & & & & $
Zeichnen Sie das statisch bestimme Ersatzsyste spannung in A durch ein Festlager ersetzt wird dingung an, welche sich im Lager A ergibt. Nu x_1 für den oberen Rahmenabschnitt. Die zuge	d. Geben Sie zudem die Kompatibilitätsbe- itzen Sie dafür die vorgegebene Koordinate
Skizze:	
Kompatibilitätsbedingung:	

Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel Prof. Dr.-Ing. J. Mosler Vorname: _____


Nachname:

Matr.-Nr.: _____

Aufgabe 3 (Seite 2 von 6)

b)

Ein alternatives Ersatzsystem ist in der nebenstehenden Abbildung dargestellt. Dabei wurde die feste Einspannung in A durch eine Schiebehülse ersetzt und die statisch überzählige Kraft X eingeführt. Die Normalkraft- und Biegemomentenverläufe für die einzelnen Rahmenabschnitte sind im Folgenden gegeben. Beiträge aus Schubverformung sind in diesem Aufgabenteil zu vernachlässigen.

Die Funktionen der Normalkräfte und Biegemomente sind für dieses System wie folgt vorgegeben.

in Abhängigkeit von X für $q_0 = 0$:

$$N_X(x_1) = -X$$

$$N_X(x_2) = 0$$

$$N_X(x_3) = -X$$

$$M_X(x_1) = 4X l$$

$$M_X(x_2) = [4l - x_2]X$$

$$M_X(x_3) = 0$$

in Abhängigkeit von q_0 für X=0:

$$N_q(x_1) = 0$$

$$N_q(x_2) = [x_2 - 4 l] q_0 \cos(\alpha)$$

$$N_q(x_3) = -4 q_0 l \sin(\alpha)$$

$$M_g(x_1) = 4 q_0 \left[l \cos(\alpha) x_1 - l^2 \left[\cos(\alpha) - 2 \sin(\alpha) \right] \right]$$

$$M_q(x_2) = q_0 \sin(\alpha) \left[8 l^2 - \frac{x_2^2}{2} \right]$$

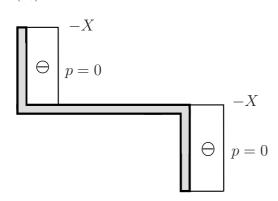
$$M_q(x_3) = 0$$

Fakultät Maschinenbau Institut für Mechanik

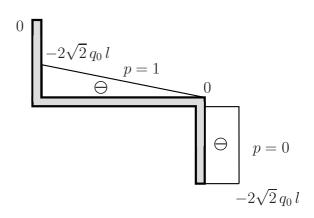
Prof. Dr.-Ing. A. Menzel

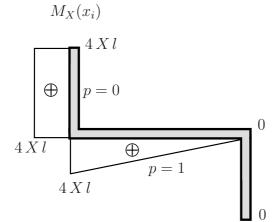
Prof. Dr.-Ing. J. Mosler

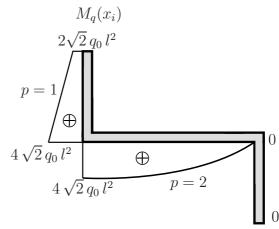
Vorname: _____


Nachname:

Matr.-Nr.: _____


Aufgabe 3 (Seite 3 von 6)


Die grafische Darstellung der Verläufe ergibt sich für $\alpha=\pi/4$ zu


 $N_X(x_i)$

 $N_q(x_i)$

TU Dortmund	Vorname:
Fakultät Maschinenbau Institut für Mechanik	Nachname:
Prof. DrIng. A. Menzel Prof. DrIng. J. Mosler	MatrNr.:
Aufgabe 3 (Seite 4 von 6)	
schritte sowie das endgültige Ergebr	e Kraft X. Geben Sie dabei die wichtigsten Zwischennis an. Es ist darauf zu achten, dass der Lösungsweg wird. Die Ergebnisse sollen nicht vereinfacht werden. (4,5 Punkte)

TU Dortmund	Vorname:	
Fakultät Maschinenbau	Nachname:	
Institut für Mechanik	2527	
Prof. DrIng. A. Menzel Prof. DrIng. J. Mosler	MatrNr.:	
FTOI. DIIIIg. J. Mosiei		
Aufgabe 3 (Seite 5 von 6)		
Bestimmen Sie den Momentenverlauf M im zweiten Rahmenabschnitt für $\alpha=\pi$		samtsystems ,5 Punkte)
Nehmen Sie nun an, dass die statisch üb	erzählige Kraft X bekannt ist und s	ich als
X =	$\frac{\mathcal{A}\sin(\alpha)}{EI + l^2 EA}$	
mit der Konstante $\mathcal{A} > 0$ schreiben lä $M(x_2 = 0)$ ändern, wenn der Winkel α ben Sie eine kurze Begründung an.	im Bereich von $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$ erhöht	

TU Dortmund	Vorname:
Fakultät Maschinenbau Institut für Mechanik Prof. DrIng. A. Menzel Prof. DrIng. J. Mosler	Nachname:
Aufgabe 3 (Seite 6 von 6) c) Der dargestellte, dehnstarre Balken $(EA \to \infty)$ der Länge l ist unter einem Winkel α fest eingespannt und weist die Biegesteifigkeit EI auf. An seinem freien Ende wird der Balken durch eine vertikale Einzelkraft F belastet.	u_F
Bestimmen Sie die im dargestellten System gehängigkeit der gegebenen Größen.	F espeicherte Formänderungsenergie Π in Ab- (2,0 Punkte)
Bestimmen Sie den Betrag u_F , um welchen s Einzelkraft verschiebt.	sich der Kraftangriffspunkt in Richtung der (1,0 Punkte)