Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel Prof. Dr.-Ing. J. Mosler

Vorname:	
Nachname:	

Matr.-Nr.: ____

Aufgabe 1 (Seite 1 von 4)

a)

Das nebenstehende Fachwerk soll mit Hilfe der Finite-Elemente-Methode (FEM) ausgelegt werden. Dazu müssen in einer Eingabedatei verschiedene Eingabegrößen festgelegt werden. Bestimmen Sie die Konnektivitätsliste der mit römischen Zahlen nummerierten Elemente basierend auf den gegebenen Knotennummern.

(1,0 Punkte)

I II III IV	Elementnummer	globale Knotennummer
	I	
	II	
IV	III	
	IV	

Die Liste aller globalen Freiheitsgrade sei wie folgt geordnet: $\mathbf{u} = [u_x^1, u_y^1, u_x^2, u_y^2, ...]^t$. Bestimmen Sie die Liste freeDofs, welche die Freiheitsgradnummern der Neumann-Freiheitsgrade beinhaltet. Geben Sie die dazu korrespondierenden Kräfte \mathbf{f}_{pre} an. (1,0 Punkte)

Für das oben abgebildete Fachwerk erfolgt die Diskretisierung anhand von einem Element pro Stab. Geben Sie die Dimension der Element-Steifigkeitsmatrizen \mathbf{K}^e der Elemente an. (0,5 Punkte)

Anzahl Zeilen:	Anzahl Spalten:

TU	Dortmund

Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel

Prof. Dr.-Ing. J. Mosler

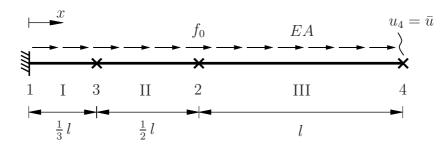
Vorname:	
Nachname:	

Matr.-Nr.:

Aufgabe 1 (Seite 2 von 4)

b)

Es soll nun mittels der FEM ein Stab (Elastizitätsmodul E, Querschnittsfläche A) bestehend aus drei Elementen berechnet werden. Der Stab ist am Knoten 1 wie dargestellt gelagert. An Knoten 4 wird die Verschiebung $u_4 = \bar{u}$ aufgeprägt. Der Stab wird durch eine konstante volumenbezogene Last f_0 belastet. Die Diskretisierung erfolgt mit linearen Ansatzfunktionen. Für die Gauß-Quadratur wird ein Gaußpunkt pro Element verwendet.



Die Elementvektoren der Volumenkräfte der drei Elemente sind bestimmt worden zu

$$oldsymbol{f}_{\mathrm{vol}}^{e=I} = rac{1}{6} \, A \, l \, f_0 egin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad oldsymbol{f}_{\mathrm{vol}}^{e=II} = rac{1}{4} \, A \, l \, f_0 egin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad oldsymbol{f}_{\mathrm{vol}}^{e=III} = rac{1}{2} \, A \, l \, f_0 egin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Assemblieren Sie diese zum globalen Vektor der Volumenkräfte \mathbf{f}_{vol} . Beachten Sie die durch die Skizze vorgegebene Konnektivität. (1,0 Punkte)

$$\mathbf{f}_{\mathrm{vol}} =$$

Bestimmen Sie die Element-Steifigkeitsmatrix $\mathbf{K}^{e=\mathrm{III}}$ von Element III. (1,5 Punkte)

$$\mathbf{K}^{e=\mathrm{III}}=$$

Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel

Prof. Dr.-Ing. J. Mosler

Vorname: _____

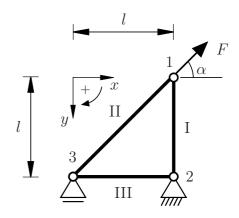
Nachname:

Matr.-Nr.:

Aufgabe 1 (Seite 3 von 4)

c)

Für nebenstehende reduzierte Fachwerk bestehend aus drei Stäben (Elastizitätsmodul E, Querschnittsfläche A) ist die Liste aller globalen Freiheitsgrade wie folgt geordnet: $\mathbf{u} = [u_x^1, u_y^1, u_x^2, u_y^2, ...]^t$, sodass drltDofs = [3, 4, 6] und freeDofs = [1, 2, 5]. Die globale Steifigkeitsmatrix K und die Verschiebungen \mathbf{u}_F wurden bereits mit $a = \sqrt{2}/4$ bestimmt zu



$$\mathbf{K} = \frac{EA}{l} \begin{bmatrix} a & -a & 0 & 0 & -a & a \\ -a & 1+a & 0 & -1 & a & -a \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ -a & a & -1 & 0 & 1+a & -a \\ a & -a & 0 & 0 & -a & a \end{bmatrix}, \quad \mathbf{u}_F = \frac{l}{EA} \begin{bmatrix} [2 + \frac{1}{a}]F_x + F_y \\ F_x + F_y \\ F_x \end{bmatrix}.$$

$$\mathbf{u}_F = \frac{l}{EA} \begin{bmatrix} [2 + \frac{1}{a}]F_x + F_y \\ F_x + F_y \\ F_x \end{bmatrix}.$$

Extrahieren Sie die Matrizen \mathbf{K}_{DF} und \mathbf{K}_{DD} aus der Steifigkeitsmatrix \mathbf{K} . (1,0 Punkte)

$$\mathbf{K}_{DF}=$$
 $\mathbf{K}_{DD}=$

Geben Sie die Gleichung zur Bestimmung der unbekannten Reaktionskräfte $\mathbf{f}_{\text{sur }D}$ an. Bestimmen Sie zusätzlich darin enthaltene unbekannten Größen anhand des oben abgebildeten Systems. Das Ergebnis muss nicht berechnet werden. (**0,5** Punkte)

$$\mathbf{f}_{\sup D} =$$

Sie eine Möglichkeit zur Verifizierung obigen Ergebnisses des der Reaktionskräfte $\mathbf{f}_{\text{sur }D}$ für das gegebene System an. (**0,5** Punkte)

Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel Prof. Dr.-Ing. J. Mosler

Vorname:	
	_

Nachname:

Matr.-Nr.: _____

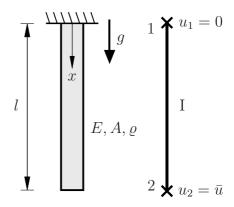
Aufgabe 1 (Seite 4 von 4)

d)

Es soll nun in einem der FEM nachgeschalteten Schritt für den nebenstehenden Stab die aufgenommene interne elastische Energie

$$\Pi_{\text{int}} \approx \Pi_{\text{int}}^h = \sum_{e=1}^{n_{\text{el}}} \left[\int_{\mathcal{B}^e} \frac{1}{2} EA \left[\frac{\mathrm{d}u^h(x)}{\mathrm{d}x} \right]^2 \mathrm{d}x \right]$$

bestimmt werden. Die Diskretisierung des Stabes erfolgt mit einem Element. Die Verschiebungen $u_1=0$ und $u_2=\bar{u}$ sind bereits bekannt.



Geben Sie die Koordinatentransformation $x^h(\xi)$ auf das Masterelement für das oben abgebildete System unter der Verwendung von linearen Ansatzfunktionen an. Geben Sie zudem die inverse Funktion $\xi^h(x)$ an. (1,0 Punkte)

$$x^h(\xi) = \qquad \qquad \xi^h(x) =$$

Geben Sie die Interpolationsfunktion des Verschiebungsfeldes $u^h(\xi)$ auf dem Masterelement für das oben abgebildete System unter der Verwendung von linearen Ansatzfunktionen an. Geben Sie zudem die Ableitung des Verschiebungsfeldes $u^h(\xi)$ bzgl. x an. (1,0 Punkte)

$$u^h(\xi) = \frac{\mathrm{d}u^h(\xi)}{\mathrm{d}x} =$$

Transformieren Sie das Integral der internen elastischen Energie auf das Masterelement und wenden Sie die Gauß-Quadratur an. Eine allgemeine Formel ist ausreichend. Das Ergebnis muss **nicht** berechnet werden. (1,0 Punkte)

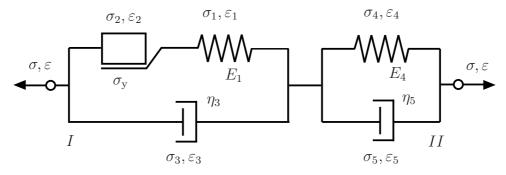
$$\int_{\mathcal{B}^e} \frac{1}{2} E A \left[\frac{\mathrm{d}u^h(x)}{\mathrm{d}x} \right]^2 \mathrm{d}x =$$

TU Dortmund	Vorname:	
10 Dortillulla		
Fakultät Maschinenbau	Nachname:	
Institut für Mechanik		
Prof. DrIng. A. Menzel	MatrNr.:	
Prof. DrIng. J. Mosler		

Aufgabe 2 (Seite 1 von 4)

a)

Das dargestellte rheologische Modell mit den Elastizitätsmoduli E_1 und E_4 , den Dämpfungskonstanten η_3 und η_5 und der Fließgrenze σ_y wird im Folgenden betrachtet. Die den jeweiligen Teilkörpern zugehörigen Spannungen und Dehnungen σ_{\bullet} und ε_{\bullet} mit $\bullet = \{1, 2, 3, 4, 5\}$ sind der Skizze zu entnehmen.



Geben Sie zunächst die Spannung σ_4 und Dehnung ε_4 in der rechten Feder in Abhängigkeit der Größen $\sigma_1, \sigma_3, \sigma_5$ und $\varepsilon, \varepsilon_3$ an. (1,5 Punkte)

$$\sigma_4(\sigma_1, \sigma_3, \sigma_5) =$$
 $\varepsilon_4(\varepsilon, \varepsilon_3) =$

Gesucht ist nun eine konstitutive Gleichung für die Gesamtspannung σ . Stellen Sie je eine Gleichung für σ anhand der Schaltung der Elemente 1, 2, 3 (I) sowie anhand der Schaltung der Elemente 4, 5 (II) in Abhängigkeit der Größen $\varepsilon, \dot{\varepsilon}, \varepsilon_1, \dot{\varepsilon}_1, \varepsilon_4, \dot{\varepsilon}_4$ auf. (2,0 Punkte)

```
I: \quad \sigma = II: \quad \sigma =
```

Das oben dargestellte rheologische Modell lässt sich auf den Bingham-Hooke-Körper durch die Festlegung von zwei Materialparametern reduzieren. Nennen Sie diese beiden Materialparameter und geben Sie jeweils einen Wert an. (1,0 Punkte)

TU Dortmund	Vorname:
Fakultät Maschinenbau	Nachname:
Institut für Mechanik	
Prof. DrIng. A. Menzel Prof. DrIng. J. Mosler	MatrNr.:
Prof. Dring. J. Mosier	
Aufgabe 2 (Seite 2 von 4)	
b)	
Die Gleichungen zur Lösung eines Bingham-Hooke-Körpers seien als	ε
$\sigma = E \varepsilon \text{für} \sigma < \sigma_{\text{y}}$	$arepsilon_0$
$\sigma + \eta \dot{\sigma} / E = \eta \dot{\varepsilon} + \sigma_{\mathrm{y}} \text{für} \sigma \ge \sigma_{\mathrm{y}}$	
mit als bekannt vorausgesetzten Materialparametern gegeben. Das System sei mit einer zum Zeitpunkt $t=t^*$ sprunghaft ansteigenden Dehnung $\varepsilon(t)$ mit $\varepsilon_0=2\sigma_{\rm y}/E$ wie dargestellt belastet.	$0 \qquad \qquad t^* \qquad T$
Berechnen Sie für diesen Belastungszustand die $0 \le t < t^*$ und $t^* < t \le T$. Konstanten aus Anfangswerden. Geben Sie im nachfolgenden Kästchen	sbedingungen müssen nicht bestimmt
Der Bingham-Hooke-Körper lässt sich auf den Pr Materialparameters reduzieren. Nennen Sie dieser dessen Wert an.	-

TU Dortmund	Vorname:
10 Dortmand	
Fakultät Maschinenbau	Nachname:
Institut für Mechanik	
Prof. DrIng. A. Menzel	MatrNr.:

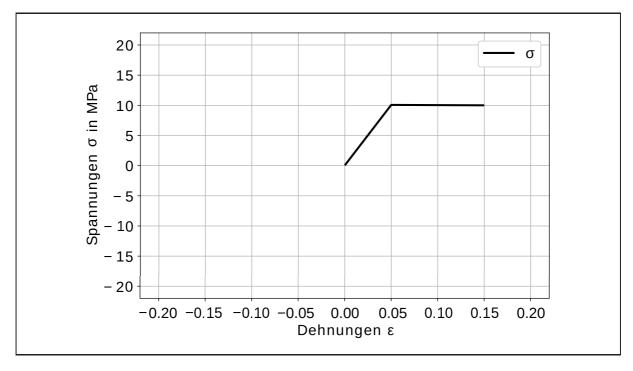
Aufgabe 2 (Seite 3 von 4)

Prof. Dr.-Ing. J. Mosler

c)

Im Rahmen eines Belastungstests wurde der Dehnungsverlauf $\varepsilon(t)$ für ein anderes Material, welches durch den Prandtl-Körper beschrieben werden kann, mithilfe eines Dehnungsmessstreifens wie folgt gemessen:

Die zugehörige Spannungs-Dehnungs-Kurve, die während des Tests aufgezeichnet wurde, ist im Folgenden dargestellt. Die Kurve wurde allerdings nicht bis zum Ende des Versuchs aufgezeichet. Vervollständigen Sie die Spannungs-Dehnungs-Kurve bis zum Ende des Tests anhand der gegebenen Dehnungskurve. (1,5 Punkte)



Fakultät Maschinenbau	Nachname:
Institut für Mechanik Prof. DrIng. A. Menzel Prof. DrIng. J. Mosler	MatrNr.:
Fior. Dring. 3. Wosiei	
Aufgabe 2 (Seite 4 von 4)	
Geben Sie den Elastizitätsmodul ${\cal E}$ und c	die Fließgrenze $\sigma_{\rm y}$ des Materials an. (1,0 Punkte)
E =	
$\sigma_{ m y} =$	

Vorname:

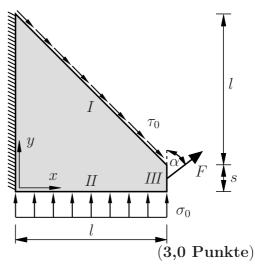
TU Dortmund	Vorname:
Fakultät Maschinenbau Institut für Mechanik Prof. DrIng. A. Menzel Prof. DrIng. J. Mosler	Nachname:
Airysche Spannungsfunktion gegeben	ines linear elastischen Materials ist die folgende
$F = C_1 x^5 y + C_2 x^3 y^3.$	
Berechnen Sie die Spannungen σ_{xx}, σ_{x} spezifizieren.	σ_{yy} und σ_{yy} ohne die Konstanten C_1 und C_2 zu (1,5 Punkte)
$\sigma_{xx} =$ $\sigma_{xy} =$ $\sigma_{yy} =$	
	indeutig ein Verschiebungsfeld zugeordnet werden riterium an und bestimmen Sie ggf. das nötige (1,5 Punkte)

TU Dortmund	Vorname:
10 Dortillulla	
Fakultät Maschinenbau	Nachname:
Institut für Mechanik	
Prof. DrIng. A. Menzel	MatrNr.:
Prof Dr-Ing Mosler	

Aufgabe 3 (Seite 2 von 4) b)

Die nebenstehend skizzierte Scheibe der Dicke t ist auf der linken Seite eingespannt und wird wie dargestellt durch Traktionen τ_0 auf Rand I und σ_0 auf Rand II belastet. Die Kraft F wirkt auf Rand III und greift unter dem Winkel α an. Es liegt ein ebener Spannungszustand vor.

Geben Sie sämtliche Spannungs-Randbedingungen des Systems für die Ränder I, II und III an. Nennen Sie dazu auch die Definitionsbereiche für x und y der jeweiligen Spannungskomponenten.



TU Dortmund	Vorname:	
Fakultät Maschinenbau	Nachname:	
Institut für Mechanik Prof. DrIng. A. Menzel	MatrNr.:	
Prof. DrIng. J. Mosler		
Aufgabe 3 (Seite 3 von 4)		
c)		
Für ein anderes nicht näher spezifiziertes Sys	stem sei die Schubspannung	
$\sigma_{13} = -C_1 x_3^2 - \frac{C_2}{2}$		
berechnet worden. Es gelten außerdem die S	pannungsrandbedingungen	
$\sigma_{13}(x_1, x_3 = h) = 0,$	$\int_{0}^{h} \sigma_{13}(x_1 = 0, x_3) b \mathrm{d}x_3 = R ,$	
0		
wobe i \boldsymbol{b} konstant ist.		
•		Punkte)
wobei b konstant ist.		Punkte)
wobei b konstant ist.		Punkte)
wobei b konstant ist.		Punkte)
wobei b konstant ist.		Punkte)
wobei b konstant ist.		Punkte)
wobei b konstant ist.		Punkte)
wobei b konstant ist.		Punkte)
wobei b konstant ist.		Punkte)
wobei b konstant ist.		Punkte)

TU Dortmund			Vorname:	
Fakultät Maschinenl Institut für Mechani Prof. DrIng. A. Me Prof. DrIng. J. Mo	k enzel		Nachname:	
Aufgabe 3 (Sei	te 4 von 4)			
d)				
	s und linear-elast or mit der Koeffizi		Lamé Parameter λ und	d μ) wurde ein
$[oldsymbol{arepsilon}]_{oldsymbol{e}_{1,2,3}} = igg $	$ \begin{bmatrix} 20 a x_2 x_1 \\ 5 b x_1^2 + 3 a x_1 x_2 \\ 0 \end{bmatrix} $	$5 b x_1^2 + 3 a x_1 x_2 6 b x_1^2 0$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
	_		nstanten a und b sich second Verschiebungsfeld be	
Geben Sie den z $x_1 = 1$ und $x_2 =$		ungszustand in K	oeffizientendarstellung	für den Punkt (1,0 Punkte)