Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel

Prof. Dr.-Ing. J. Mosler

Vorname:

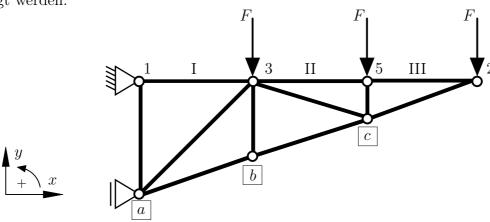
Nachname:

Matr.-Nr.: _____

Aufgabe 1 (Seite 1 von 4)

a)

Das unten abgebildete Fachwerk soll mit Hilfe der Finite-Elemente-Methode (FEM) ausgelegt werden.



Elementnummer	Ι	II	III	IV	V	VI	VII	VIII	IX	X	XI
Globale Knotennummern	1,3	3,5	5,2	1,6	6,4	4,7	2,7	3,4	5,7	3,6	3,7

Betrachten Sie die oben angegebene Konnektivitätsliste für die mit römischen Zahlen nummerierten Elemente. Ordnen sie den fehlenden Knoten a, b, c ihre entsprechende Knotenummer aus der Konnektivitätsliste zu. (1,0 Punkte)

$$a = 6 b = 4 c = 7$$

Die Liste aller globalen Freiheitsgrade sei wie folgt geordnet: $\mathbf{u} = [u_x^1, u_y^1, u_x^2, u_y^2, ...]^{\mathsf{t}}$. Bestimmen Sie die Liste drltdofs, welche die Freiheitsgradnummern der Dirichlet-Freiheitsgrade beinhaltet. Geben Sie die zu den Freiheitsgradnummern der Neumann-Freiheitsgrade korrespondierenden Kräfte $\mathbf{f}_{\text{pre}} (= \mathbf{f}_{\text{sur}\,F})$ an. Beachten Sie das vorgegebene Koordinatensystem. (1,0 Punkte)

$$\mathtt{drltDoFs} = [1, \qquad \qquad 2, \qquad \qquad 11]^{\mathrm{t}}$$

$$\mathbf{f}_{\text{pre}} = \mathbf{f}_{\text{sur } F} = [0, -F, 0 -F, 0, 0, 0, -F, 0, 0, 0]^{\text{t}}$$

Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel

Prof. Dr.-Ing. J. Mosler

Nachname:

Matr.-Nr.:

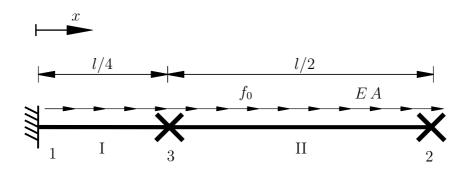
Vorname: _____

Aufgabe 1 (Seite 2 von 4)

Geben Sie für das oben abgebildete Fachwerk und die angegebene Diskretisierung die nachfolgenden Dimensionen des Randwertproblems an. (**0,5** Punkte)

$$\mathrm{nnp}=7 \hspace{1cm} \mathrm{ndf}=2 \hspace{1cm} \mathrm{ndm}=2 \hspace{1cm} \mathrm{nel}=11$$

b) Es soll nun mittels der FEM ein Stab (Elastizitätsmodul E, Querschnittsfläche A) bestehend aus zwei Elementen berechnet werden. Der Stab ist am Knoten 1 wie dargestellt gelagert. Der Stab wird durch eine konstante volumenbezogene Last f_0 belastet. Die Diskretisierung erfolgt mit linearen Ansatzfunktionen. Für die Gauß-Quadratur wird ein Gaußpunkt pro Element verwendet.



Darüber hinaus sind die Steifigkeitsmatrizen und die Vektoren der Volumenkräfte der Elemente bestimmt worden zu

$$\mathbf{K}^{e=\mathrm{I}} = \frac{EA}{l} \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \text{ und } \mathbf{K}^{e=\mathrm{II}} = \frac{EA}{l} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}.$$

$$\mathbf{f}_{\text{vol}}^{e=\text{I}} = \frac{1}{8} A l f_0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ und } \mathbf{f}_{\text{vol}}^{e=\text{II}} = \frac{1}{4} A l f_0 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel

Prof. Dr.-Ing. J. Mosler

Vorname:	

Nachname:

Matr.-Nr.:

Aufgabe 1 (Seite 3 von 4)

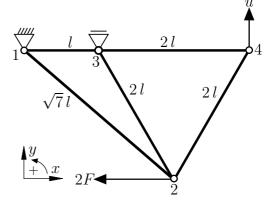
Bestimmen Sie die globale Steifigkeitsmatrix \mathbf{K} und den globalen Volumenkraftvektor \mathbf{f}_{vol} unter Beachtung der durch die Skizze vorgegebenen Konnektivitäten. (1,5 Punkte)

$$\mathbf{K} = \frac{EA}{l} \begin{bmatrix} 4 & 0 & -4 \\ 0 & 2 & -2 \\ -4 & -2 & 6 \end{bmatrix}$$
$$\mathbf{f}_{\text{vol}} = \frac{1}{8} A l f_0 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\mathbf{f}_{\text{vol}} = \frac{1}{8} A \, l \, f_0 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

c)

Für das nebenstehende Fachwerk bestehend aus fünf Stäben (Elastizitätsmodul E, Querschnittsfläche A) ist die Liste aller globalen Freiheitsgrade wie folgt geordnet: $\mathbf{u} = [u_x^1, u_y^1, u_x^2, u_y^2, \ldots]^t$, sodass $\mathtt{drltDofs} = [1, 2, 6, 8]^t$ und $freeDofs = [3, 4, 5, 7]^{t}$. Die globale Steifigkeitsmatrix **K** wurde bereits mit a = 1/8, $b = 1/\left[7\sqrt{7}\right], c = \sqrt{3}a, d = \sqrt{3}b$ bestimmt zu



sodass arthors = [1, 2, 0, 8] und freeDofs = [3, 4, 5, 7]^t. Die globale Steifigkeitsmatrix K wurde bereits mit
$$a = 1/8$$
, $b = 1/[7\sqrt{7}]$, $c = \sqrt{3}a$, $d = \sqrt{3}b$ bestimmt zu $2F$

$$\begin{bmatrix} 4b+1 & -2d & -4b & 2d & -1 & 0 & 0 & 0 \\ -2d & 3b & 2d & -3b & 0 & 0 & 0 & 0 \\ -4b & 2d & 4b+2a & -2d & -a & c & -a & -c \\ 2d & -3b & -2d & 3b+6a & c & -3a & -c & -3a \\ -1 & 0 & -a & c & 5a+1 & -c & -4a & 0 \\ 0 & 0 & c & -3a & -c & 3a & 0 & 0 \\ 0 & 0 & -a & -c & -4a & 0 & 5a & c \\ 0 & 0 & -c & -3a & 0 & 0 & c & 3a \end{bmatrix}$$

Prof. Dr.-Ing. J. Mosler

Vorname:

Nachname:

Matr.-Nr.: _____

Aufgabe 1 (Seite 4 von 5)

Extrahieren Sie die Matrix \mathbf{K}_{FD} aus der Steifigkeitsmatrix $\mathbf{K}.$

(1,5 Punkte)

$$\mathbf{K}_{FD} = \frac{EA}{l} \begin{bmatrix} -4b & 2d & c & -c \\ 2d & -3b & -3a & -3a \\ -1 & 0 & -c & 0 \\ 0 & 0 & 0 & c \end{bmatrix}$$

Geben Sie die Gleichung zur Bestimmung der unbekannten Reaktionskräfte $\mathbf{f}_{\text{sur}\,D}$ an. Das Ergebnis muss **nicht** berechnet werden. (1,0 **Punkte**)

$$\mathbf{f}_{\operatorname{sur}D} = \mathbf{K_{DF}} \cdot \mathbf{u_F} + \mathbf{K_{DD}} \cdot \mathbf{u_D} - \mathbf{f_{\operatorname{vol}D}}$$

Für welche globalen Freiheitsgrade gibt der Vektor $\mathbf{f}_{\sup D}$ die Reaktionskräfte an? (0,5 Punkte)

$$\mathtt{drltDofs} = [1, 2, 6, 8]^t$$

Geben Sie die erste Komponente des Reaktionskräftevektors $\mathbf{f}_{\text{sur }D}$ in Abhängigkeit der externen Kraft F an. (0,5 Punkte)

$$f_{\sup D,1}(F) = 2F$$

TH	Dortmund
10	Dorthlund

Prof. Dr.-Ing. J. Mosler

Vorname: _____

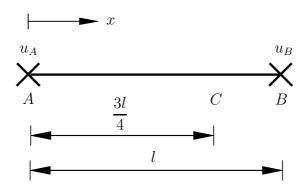
Nachname:

Matr.-Nr.: _____

Aufgabe 1 (Seite 5 von 5)

d)

Es soll nun mittels der FEM der unten abgebildete Stab (Elastizitätsmodul E) bestehend aus einem einzigen Element berechnet werden. Die Verschiebung an Punkt A ist gegeben mit u_A und an Punkt B mit u_B . Die Diskretisierung erfolg mit **linearen** Ansatzfunktionen.



Geben Sie die Koordinatentransformation $x_{\rm I}^h(\xi)$ von dem Element auf das Masterelement für das oben abgebildete System an. Geben Sie zudem die inverse Funktion $\xi_{\rm I}^h(x)$ ausgewertet an Punkt C, mit $x_C=3l/4$ für das Element I an. (1,0 Punkte)

$$x_{\rm I}^h(\xi) = (1+\xi) l/2$$
 $\xi_{\rm I}^h(x=x_C) = 1/2$

Geben Sie zudem die Ableitung des Verschiebungsfeldes $u_{\rm I}^h(\xi)$ im Punkt C des Elements in Abhängigkeit von u_A und u_B an. Geben Sie die resultierende Spannung im Punkt C an. (1,5 Punkte)

$$\frac{\mathrm{d}u_{\mathrm{I}}^{h}(\xi)}{\mathrm{d}x}\bigg|_{x=x_{C}} = (-u_{A} + u_{B})/l \qquad \qquad \sigma(x=x_{C}) = E(-u_{A} + u_{B})/l$$

TU Dortmund	
-------------	--

Prof. Dr.-Ing. J. Mosler

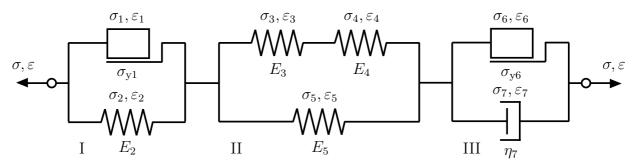
Vorname:	
Nachname:	

Matr.-Nr.: _____

Aufgabe 2 (Seite 1 von 4)

a)

Im Folgenden wird das unten dargestellte rheologische Modell bestehend aus den Teilkörpern I, II und III mit den Elastizitätsmoduli E_2 , E_3 , E_4 , E_5 , den Fließgrenzen σ_{y1} , σ_{y6} und der Dämpfungskonstanten η_7 betrachtet. Die den jeweiligen Teilkörpern zugehörigen Spannungen σ_{\bullet} und Dehnungen ε_{\bullet} mit $\bullet = \{1, 2, 3, 4, 5, 6, 7\}$ sind der Skizze zu entnehmen und zunächst als **bekannt** anzunehmen. Im Ausgangszustand sind alle Dehnungen ε_{\bullet} identisch Null.



Geben Sie die Spannung σ_1 in Abhängigkeit der Spannungen $\sigma_2, \sigma_4, \sigma_5$ an. (0,5 Punkte)

$$\sigma_1(\sigma_2,\sigma_4,\sigma_5)=\sigma_4+\sigma_5-\sigma_2$$

Geben Sie die Spannung σ_7 in Abhängigkeit der Spannungen $\sigma_3, \sigma_5, \sigma_6$ an. (0,5 Punkte)

$$\sigma_7(\sigma_3,\sigma_5,\sigma_6)=\sigma_3+\sigma_5-\sigma_6$$

Geben Sie die Dehnung ε_2 in Abhängigkeit der Dehnungen $\varepsilon, \varepsilon_3, \varepsilon_4, \varepsilon_7$ an. (0,5 Punkte)

$$\varepsilon_2(\varepsilon, \varepsilon_3, \varepsilon_4, \varepsilon_7) = \varepsilon - \varepsilon_3 - \varepsilon_4 - \varepsilon_7$$

Geben Sie die Dehnung ε_6 in Abhängigkeit der Dehnungen $\varepsilon, \varepsilon_1, \varepsilon_5$ an. (0,5 Punkte)

$$\varepsilon_6(\varepsilon, \varepsilon_1, \varepsilon_5) = \varepsilon - \varepsilon_1 - \varepsilon_5$$

TU	Dortmund

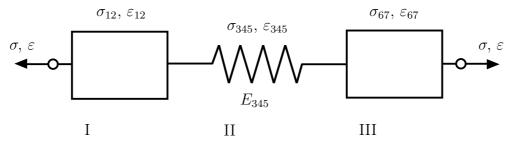
Fakultät Maschinenbau

Institut für Mechanik Prof. Dr.-Ing. A. Menzel Prof. Dr.-Ing. J. Mosler

Vorname: _____ Nachname: Matr.-Nr.:

Aufgabe 2 (Seite 2 von 4)

Im Folgenden wird das oben dargestellte rheologische Modell durch das unten skizzierte Ersatzmodell ersetzt. Die den jeweiligen Ersatzkörpern I, II und III zugehörigen Spannungen σ_{\bullet} und Dehnungen ε_{\bullet} mit $\bullet = \{12, 345, 67\}$ sind der Skizze zu entnehmen und zunächst als bekannt anzunehmen. Gehen Sie von einer monoton steigenden Belastung mit $\dot{\varepsilon} > 0$ aus.



Geben Sie für den Ersatzkörper II eine Gleichung für den Ersatzelastizitätsmodul E_{345} als Funktion der Elastizitätsmoduli E_3 , E_4 , E_5 an, sodass $\sigma_{345} = E_{345} \, \varepsilon_{345}$ gilt. (1,0 Punkte)

II:
$$E_{345}(E_3, E_4, E_5) = \frac{E_3 E_4}{E_3 + E_4} + E_5$$

Geben Sie für den Ersatzkörper I eine Gleichung für die Spannung σ_{12} im Fall $\sigma_1 = \sigma_{y1}$ an. Die Spannung σ_2 und Dehnungen ε_1 , ε_2 sind **nicht** bekannt. (1,0 Punkte)

$$I: \ \sigma_{12} = \sigma_{y1} + E_2 \,\varepsilon_{12}$$

Geben Sie für den Ersatzkörper III eine Gleichung für die Spannung σ_{67} im Fall $\sigma_6 = \sigma_{y6}$ an. Die Spannung σ_7 und Dehnungen ε_6 , ε_7 sind **nicht** bekannt. (1,0 Punkte)

III:
$$\sigma_{67} = \sigma_{y6} + \eta_7 \, \varepsilon_{67}$$

Geben Sie für das Gesamtsystem eine Differentialgleichung in σ , $\dot{\sigma}$, $\dot{\varepsilon}$ im Fall $\sigma_1 < \sigma_{y1}$ und $\sigma_6 = \sigma_{y6}$ an. Die Spannungen σ_{\bullet} und Dehnungen ε_{\bullet} sind **nicht** bekannt. (2,0 Punkte)

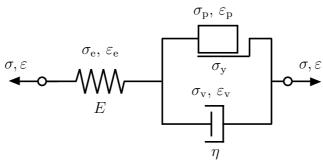
Bingham-Hooke-Körper:
$$\sigma + \frac{\eta_7}{E_{345}}\dot{\sigma} = \eta_7\dot{\varepsilon} + \sigma_{y6}$$

TU Dortmund Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel Prof. Dr.-Ing. J. Mosler

Aufgabe 2 (Seite 3 von 4)

b)

In einer Programmierübung wurde das Verhalten des unten dargestellten Bingham-Hooke-Körpers anhand eines numerischen Lösungsansatzes untersucht.



Zur Bestimmung der viskoplastischen Dehnung $\varepsilon_{\text{vp}\,n+1}$ und der Spannung σ_{n+1} im aktuellen Zeitschritt wurde die Funktion stress() unter Verwendung eines impliziten Euler rückwärts Zeitintegrators und einer Predictor-Corrector Methode implementiert.

Vervollständigen Sie den unten dargestellten Python Programmcode. (1,5 Punkte)

```
def stress(eps, epsvpn, dt, E, sigy, eta):
   # Berechnung der Trial Spannung
   sigtr = E * (eps - epsvpn)
   # Berechnung der Trial-Fließfunktion
   phitr = np.abs(sigtr) - sigy
   # Überprüfung des Materialzustands
   if phitr <= 0:</pre>
     # Elastischer Zustand:
     # Update der viskoplastischen Dehnung und Spannung
     epsvp =
     sig
   else:
     # Visko-plastischer Zustand:
     # Berechnung des viskoplastischen Multiplikators
     dlambda = phitr / (eta / dt + E)
     # Update der viskoplastischen Dehnung und Spannung
     epsvp =
     sig =
   return sig, epsvp
```

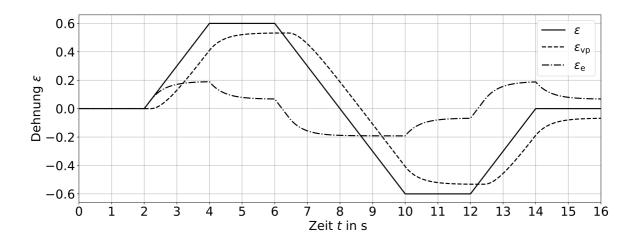
TU Dortmund	Vorname:	
10 Dortmand		
Fakultät Maschinenbau	Nachname:	
Institut für Mechanik		
Prof. DrIng. A. Menzel	MatrNr.:	

Aufgabe 2 (Seite 4 von 4)

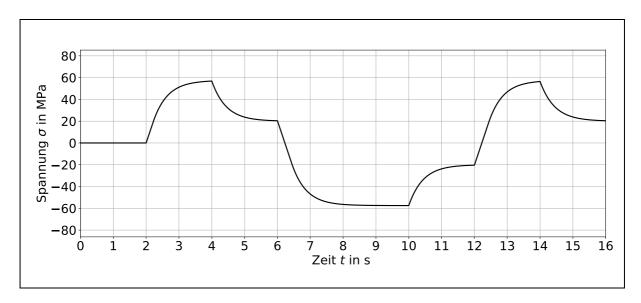
Prof. Dr.-Ing. J. Mosler

c)

Das Materialverhalten des Bingham-Hooke-Körpers wurde für den unten vorgegebenen zeitlichen Verlauf der Gesamtdehnung $\varepsilon(t)$ und die Materialparameter $E=300\,\mathrm{MPa}$, $\sigma_\mathrm{y}=20\,\mathrm{MPa}$, $\eta=125\,\mathrm{MPa}\,\mathrm{s}$ numerisch untersucht. Die sich dadurch ergebenden zeitlichen Verläufe der viskoplastischen Dehnung $\varepsilon_\mathrm{vp}(t)$ und elastischen Dehnung $\varepsilon_\mathrm{e}(t)$ sind bereits ermittelt worden.



Skizzieren Sie den resultierenden zeitlichen Verlauf der Spannung $\sigma(t)$ des Bingham-Hooke-Körpers für den vorgegebenen Gesamtdehnungsverlauf $\varepsilon(t)$. (1,5 Punkte)



Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel Prof. Dr.-Ing. J. Mosler

Vorname:	
	-

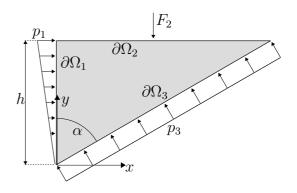
Nachname:

Matr.-Nr.: _____

Aufgabe 3 (Seite 1 von 3)

a)

Die abgebildete Scheibe sei an den drei Rändern $\partial\Omega_1$, $\partial\Omega_2$ und $\partial\Omega_3$ wie gezeigt durch eine Kraft F_2 sowie die zwei Druck-Streckenlasten mit Maximalwerten p_1 und p_3 belastet, wobei das x-y-Koordinatensystem genau in der linken unteren Ecke der Scheibe liegt. Gehen Sie im Folgenden von einem ebenen Spannungszustand in der Platte mit Dicke t aus, die sich im statischen Gleichgewicht befindet.



Bestimmen Sie sämtliche Spannungsrandbedingungen (ggf. auch in integraler Form) an den Rändern $\partial\Omega_1$, $\partial\Omega_2$ und $\partial\Omega_3$ bzgl. des vorgegebenen Koordinatensystems. (3,5 Punkte)

Rand
$$\partial\Omega_1$$
: $x = 0$, $0 \le y \le h$

$$\sigma_{xx}(x = 0, y) = -p_1 \frac{y}{h}$$

$$\tau_{xy}(x = 0, y) = 0$$

Rand
$$\partial \Omega_2$$
: $0 \le x \le h \tan(\alpha)$, $y = h \le h$

$$\int_0^{h \tan \alpha} \sigma_{yy}(x, y = h) dx = -\frac{F_2}{t}$$

$$\int_0^{h \tan \alpha} \tau_{xy}(x, y = h) dx = 0 \quad \text{oder} \quad \tau_{xy}(x, y = h) = 0$$

Rand
$$\partial \Omega_3$$
: $x = y \tan(\alpha)$, $0 \le y \le h$

$$\sigma_{xx}(x = y \tan(\alpha), y) \cos(\alpha) - \tau_{xy}(x = y \tan(\alpha), y) \sin \alpha = -p_3 \cos(\alpha)$$

$$\tau_{xy}(x = y \tan(\alpha), y) \cos(\alpha) - \sigma_{yy}(x = y \tan(\alpha), y) \sin(\alpha) = p_3 \sin(\alpha)$$

TU Dortmund Vorname: Fakultät Maschinenbau Institut für Mechanik Prof. Dr.-Ing. A. Menzel Norname: Matr.-Nr.:

Aufgabe 3 (Seite 2 von 3)

Prof. Dr.-Ing. J. Mosler

Sie finden für ein ähnliches Problem die Airy'sche Spannungsfunktion

$$F = C_1 + C_2 x + C_3 x y + C_4 x y^2$$

mit den Konstanten C_1 , C_2 , C_3 und C_4 . Ist dies ein geeigneter Lösungsansatz **für das** oben gezeigte Problem? Begründen Sie Ihre Antwort. (1,0 Punkte)

$$\sigma_{yy} = \frac{\partial^2 F}{\partial x^2} = 0$$

Daher kann die Randbedingung auf $\partial \Omega_2$ nicht erfüllt sein.

b)

Für ein anderes System mit Koordinaten x und y sei die Airy'sche Spannungsfunktion

$$F = 2\exp\left(\frac{b}{h}y\right)\cos\left(\frac{b}{h}x\right)$$

mit den Konstanten b und h gegeben. Bestimmen Sie den Spannungstensor in Abhängigkeit der Koordinaten x und y. (2,0 Punkte)

$$\sigma_{xx} = \frac{\partial^2 F}{\partial y^2} = 2\frac{b^2}{h^2} \exp(\frac{b}{h}y) \cos(\frac{b}{h}x)$$

$$\sigma_{yy} = \frac{\partial^2 F}{\partial x^2} = -2\frac{b^2}{h^2} \exp(\frac{b}{h}y) \cos(\frac{b}{h}x)$$

$$\tau_{xy} = -\frac{\partial^2 F}{\partial x \partial y} = 2\frac{b^2}{h^2} \exp(\frac{b}{h}y) \sin(\frac{b}{h}x)$$

_	- 1 1	ъ.	ı
- 1	U	Dortmun	d

Prof. Dr.-Ing. J. Mosler

Vorname:

Nachname:

Matr.-Nr.: _____

Aufgabe 3 (Seite 3 von 3)

c)

Es sei das zweidimensionale Verschiebungsfeld

$$[\mathbf{u}]_{x,y} = \begin{bmatrix} 6 u_0 \frac{l}{h^4} x^2 y \\ 3u_0 \frac{1}{h^2} [y^2 - x^2] \end{bmatrix}$$

im orthonormalen x-y-Koordinatensystem gegeben. Bestimmen Sie den dazugehörigen Verzerrungstensor. (2,0 Punkte)

$$[\varepsilon]_{x,y} = \frac{3u_0}{h^4} \begin{bmatrix} 4lx \, y & l \, x^2 - h^2 \, x \\ l \, x^2 - h^2 \, x & 2 \, h^2 \, y \end{bmatrix}$$

d)

Bestimmen Sie für den in Koeffizientendarstellung gegebenen Spannungstensor

$$[\boldsymbol{\sigma}]_{x,y,z} = \sigma_0 \begin{bmatrix} 2 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

die (Haupt-)Invarianten J_1 , J_2 , und J_3 .

(1,5 Punkte)

$$J_1 = 3\sigma_0$$

$$J_2 = -14\sigma_0^2$$

$$J_3 = -12\sigma_0^3$$