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a)

Nennen Sie zwei Gründe, warum viele technisch relevante Randwertprobleme nicht
analytisch lösbar sind. (0,5 Punkte)

Nennen Sie mindestens zwei wesentliche konzeptionelle Teilschritte zur Herleitung der
residualen Gleichung der Finiten-Elemente-Knotenkräfte. (0,5 Punkte)

Geben Sie für die unten abgebildeten Systeme A und B an, ob sie sich mit der Finite-
Elemente-Methode unter Verwendung eindimensionaler Stabelemente modellieren und
lösen lassen. Begründen Sie Ihre Entscheidung in kurzen Worten. (1,0 Punkte)
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Für die zwei unten dargestellten Stabsysteme ergeben sich die darunter dargestellten
analytischen Verläufe der Verschiebungen. Die Verschiebungen sollen anhand der FEM
unter Verwendung von drei Elementen und linearen Ansatzfunktion näherungsweise
bestimmt werden. Identifizieren Sie, welche Diskretisierung für den jeweiligen Lastfall am
geeignetsten ist. (1,0 Punkte)
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b)
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Elementnummer I II III IV V VI VII VIII IX
Globale Knotennummern 1,9 4,9 5,10 6,2 3,8 7,8 5,3 5,8 7,5

Elementnummer X XI XII XIII XIV XV XVI XVII
Globale Knotennummern 8,6 6,3 7,1 4,8 7,9 2,8 4,7 3,10

Betrachten Sie die oben angegebene Konnektivitätsliste. Ordnen Sie den fehlenden Knoten
a, b, c ihre entsprechende Finite-Elemente-Knotennummer aus der Konnektivitätsliste zu.

(1,0 Punkte)

a = b = c =

Die Liste aller globalen Freiheitsgrade sei wie folgt geordnet: u = [u1
x, u

1
y, u

2
x, u

2
y, ...]

t.
Bestimmen Sie die Liste drltDoFs, welche die globalen Freiheitsgradnummern der
Dirichlet-Freiheitsgrade beinhaltet. Geben Sie die zu den globalen Freiheitsgradnummern
der Neumann-Freiheitsgrade korrespondierenden Kräfte fpre (= fsurF ) an.
Hinweis: Beachten Sie das vorgegebene Koordinatensystem. (1,0 Punkte)

drltDoFs = [ ]t

fpre = fsurF = [ ]t
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Geben Sie für das oben abgebildete Fachwerk die Dimensionen der globalen Steifigkeits-
matrix K sowie die Dimensionen der Element-Steifigkeitsmatrizen K

e an. (1,0 Punkte)

Dimensionen der globalen Steifigkeitsmatrix K: [ ]

Dimensionen einer Element-Steifigkeitsmatrizen K
e: [ ]

c)

Im Rahmen der auf den Stab angewandten FEM werden zur Bestimmung der diskreten
Knoten-Verschiebungen u die Element-Knoten-Steifigkeitsbeiträge KeAB anhand der
folgenden Gleichung auf dem Master-Element näherungsweise berechnet.

KeAB ≈
∑nqp

p=1N
A
,ξ (ξp) [J

e(ξp)]
−1 EANB

,ξ (ξp) [J
e(ξp)]

−1 Je(ξp)wp .

Die oben dargestellte Gleichung soll nun auf den unten abgebildeteten Stab angewandt
werden. Der Stab wird mit einem Element (I) und vier Knoten pro Element (1, 2, 3, 4)
diskretisiert.
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Die auf dem dargestellten Master-Element definierten kubischen Ansatzfunktionen
(Lagrange-Polynome) NA(ξ) sind durch den folgenden Ausdruck gegeben:

NA(ξ) =

nen=4
∏

J =1
J 6=A

ξJ − ξ

ξJ − ξA
mit ξ ∈ [−1,+1], sodass NA(ξH) = δAH .

Die Ansatzfunktionen N1(ξ), N2(ξ) sowie deren Ableitungen N1
,ξ(ξ) und N2

,ξ(ξ) wurden
bereits bestimmt zu:
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N1(ξ) = −
[1− 9 ξ2] [1− ξ]

16
, N1

,ξ(ξ) =
1 + 18 ξ − 27 ξ2

16
,

N2(ξ) = −
[1− 9 ξ2] [1 + ξ]

16
, N2

,ξ(ξ) =
−1 + 18 ξ + 27 ξ2

16
.

Bestimmen Sie die Ansatzfunktionen N3(ξ) und N4(ξ). Hinweis: Beachten Sie die vorge-
gebenen Master-Element-Knoten. Es gilt die Beziehung N1(ξ) = N2(−ξ). (2,0 Punkte)

N3(ξ) =

N4(ξ) =

Werten Sie die Ableitungen der Ansatzfunktionen N3
,ξ(ξ) und N4

,ξ(ξ), die für die Element-
Knoten-Steifigkeitsbeiträge KeAB benötigt werden, auf dem Master-Element am Punkt
ξ = 0 aus. (1,0 Punkte)

N3
,ξ(ξ = 0) = N4

,ξ(ξ = 0) =

Werten Sie die Jacobi-’Determinante’ Je(ξ), die für die Element-Knoten-Steifigkeits-
beiträge KeAB benötigt wird, auf dem Master-Element am Punkt ξ = 0 aus. (1,0 Punkte)

Je(ξ = 0) =
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a)

Nennen Sie mindestens zwei wesentliche Unterschiede zwischen elastischem und inelasti-
schem Materialverhalten. Wie lässt sich inelastisches Verhalten experimentell erkennen?

(1,0 Punkte)

Nennen Sie mindestens zwei Arten von inelastischem Materialverhalten. Geben Sie jeweils
einen typischen Werkstoff an, bei dem dieses Materialverhalten auftritt. (1,0 Punkte)

Die in den folgenden Abbildungen rechts dargestellten Materialantworten ergeben sich
durch die jeweils in den mittleren Abbildungen gezeigten Lastverläufe. Skizzieren Sie
in der jeweiligen linken Abbildung ein geeignetes rheologisches Modell, das dieses
Materialverhalten abbildet und auf den (linearen) rheologischen Grundkörpern basiert.
Benennen Sie außerdem das dargestellte Materialverhalten. (2,0 Punkte)

σ, εσ, ε

ε

ε0

σ

σy

tt

Materialverhalten:



TU Dortmund

Fakultät Maschinenbau

Institut für Mechanik

Prof. Dr.-Ing. A. Menzel

Prof. Dr.-Ing. J. Mosler

Vorname:

Nachname:

Matr.-Nr.:

Aufgabe 2 (Seite 2 von 4)

σ, ε σ, ε
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Materialverhalten:

b)

Im Folgenden wird das unten dargestellte rheologische Modell bestehend aus dem
Elastizitätsmodul E und der Dämpfungskonstanten η betrachtet. Die den jeweiligen
Teilkörpern zugehörigen Spannungen σ• und Dehnungen ε• mit • = {1, 2, 3, 4} sind der
Skizze zu entnehmen und als unbekannt anzunehmen.

σ, ε σ, ε

σ1, ε1 σ2, ε2

σ3, ε3 σ4, ε4

E

E

η

η

Leiten Sie eine Differentialgleichung her, die es erlaubt, die Spannung σ(t) aus einem
gegebenen Dehnungsverlauf ε(t) zu berechnen. (2,0 Punkte)
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c)

Im Folgenden wird das unten dargestellte rheologische Modell bestehend aus den
Elastizitätsmoduli E1, E4, der Dämpfungskonstanten η2 und der plastischen Fließgrenze
σy3 betrachtet. Die den jeweiligen Teilkörpern zugehörigen Spannungen σ• und Dehnungen
ε• mit • = {1, 2, 3, 4} sind der Skizze zu entnehmen und als unbekannt anzunehmen.
Im Ausgangszustand sind alle Dehnungen ε• identisch Null. Gehen Sie von einer monoton
steigenden Belastung mit ε̇ > 0 aus.

σ, εσ, ε

σ1, ε1

σ2, ε2

σ3, ε3

σ4, ε4

E1

E4

η2

σy3

Leiten Sie eine Differentialgleichung her, die es erlaubt, die Spannung σ(t) aus einem
gegebenen Dehnungsverlauf ε(t) im Fall σ3 = σy3 zu berechnen. Hinweis: Führen Sie zur
Lösung des Gesamtmodells ein geeignetes Ersatzmodel mit Teilkörpern ein. (2,0 Punkte)
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d)

In einer Programmierübung wurde das Verhalten des unten dargestellten linearen
Standardkörpers anhand eines numerischen Lösungsansatzes untersucht.

σ, ε σ, ε

σe, εe σv, εv

σ∞, ε∞

E

E∞

η

Zur Bestimmung der viskosen Dehnung εvn+1 und der Spannung σn+1 im aktuellen
Zeitschritt tn+1 = tn+∆t wurden die Funktionen stress() und res() unter Verwendung
einer impliziten Euler rückwärts Zeitintegration der Evolutionsgleichung implementiert.

Die Update-Formel für die Spannung σn+1 und die Evolutionsgleichung der viskosen
Dehnung ε̇vn+1 ergeben sich für eine als bekannt vorausgesetzte Dehnung εn+1 zu

σn+1(εn+1, εvn+1) = E [εn+1 − εvn+1] + E∞ εn+1 , ε̇vn+1 =
E

η
[εn+1 − εvn+1] .

Vervollständigen Sie den unten dargestellten Python Programmcode. (2,0 Punkte)

def stress(eps, epsvn, dt, Einf, E, eta):

# Berechnung der Relaxationszeit tau

tau = eta / E

# Update der viskosen Dehnung (impliziter Euler rückwärts)

epsv =

# Update der Spannung aus den Dehnungen

sig =

return sig, epsv

def res(eps, sig, epsv, epsvn, dt, Einf, E, eta):

# Residuum der Spannungs-Dehnungs-Beziehung

r1 =

# Residuum der Fließregel (Evolutionsgleichung)

r2 =

return np.array([r1, r2])
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a)
Die durch ein Verschiebungsfeld u(X, t) für eine Starrkörperbewegung erzeugte neue Po-
sition x(X, t) für jeden Punkt X eines Körpers ist in Abhängigkeit der Zeit t durch die
folgende Funktion gegeben:

x(X, t) = R (t) ·X + c (t) ,

wobei die Koeffizienten der Rotationsmatrix

[R]
e1,e2

=

[

cos (α (t)) − sin (α (t))
sin (α (t)) cos (α (t))

]

sowie der Vektor c (t) unabhängig von X sind.

Bestimmen Sie das Verschiebungsfeld u (X, t). (0,5 Punkte)

u (X, t) =

Bestimmen Sie den infinitesimalen Verzerrungstensor ε für den Winkel α (t) = π/2.
(1,0 Punkte)

ε (α (t) = π/2) =

Ist das Ergebnis für ε (α (t) = π/2) ein sinnvoller Verzerrungszustand für die betrachtete
Starrkörperbewegung? Begründen Sie Ihre Antwort. (1,0 Punkte)
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b)
Die dargestellte elastische Platte ist durch eine Vorspannung zwischen den starren
seitlichen Begrenzungen eingeklemmt und wird im Punkt P durch die Kraft F2 belastet.
Gehen Sie im Folgenden von einem ebenen Spannungszustand aus.

F2

P

x

y

a

aa

∂Ω1

∂Ω2

∂Ω3

∂Ω4µ0

µ0

Tiefe t

Im Folgenden soll die Airy’sche Spannungsfunktion

F (x, y) =
C1

a
x2 y +

C2

a3
x4 y + C3 y

2

verwendet werden, um das Problem näherungsweise zu berechnen. Bestimmen Sie die
Koeffizienten des zugehörigen Spannungstensors. Die Konstanten C1, C2 und C3 müssen
nicht bestimmt werden. (1,5 Punkte)
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c)
Die Lagerung an den Seiten wurde im dargestellten Freikörperbild durch
die Haftkräfte H1 und H3 sowie die Normalkräfte N1 und N3 ersetzt.

a

aa

F2

P

x

y
∂Ω1

∂Ω2

∂Ω3

∂Ω4

H1 H3

N1 N3 Tiefe t

Geben Sie die Spannungs-Randbedingungen für die Ränder ∂Ω1 und ∂Ω2 in Abhängigkeit
der Koeffizienten σxx, σyy und σxy des Spannungstensors an. (3,0 Punkte)
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Verwenden Sie im Folgenden die aus einer anderen Spannungsfunktion resultierenden
Koeffizienten des Spannungstensors

σxx = −2 σ0 , σyy = 12
D1

a3
x2 y , σxy = −4

D1

a3
x3 ,

wobei σ0 eine bekannte Konstante darstellt.

Bestimmen Sie die Konstante D1 aus der Randbedingung für die Normalspannung am
Rand ∂Ω2. (1,5 Punkte)

Geben Sie eine Bedingung für den Haftreibungskoeffizienten µ0 in Abhängigkeit von F2

und σ0 an, sodass das System sich im statischen Gleichgewicht befindet. Nutzen Sie da-
zu die Randbedingung am Rand ∂Ω1. Hinweis: Aus dem statischen Gleichgewicht des
Systems ergibt sich H1 = H3 = F2/2. (1,5 Punkte)


