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• modern design methods allow for assessment of structural quality and 
thorough design optimization long before first part has been produced

Introduction

Wendelstein 7-X fusion reactor
(Max Planck Institute)

Airflow around Boeing 737 body
(NASA / Boeing)

Topology optimised Airplane wing 
(Nature)

Car crash simulation
(Toyota Yaris)

Laser Metal Deposition
(FlowScience)

Dual torpedo impact
(Ansys)
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• high-fidelity models ⟺ complex structural behaviour
• many model variables subjected to uncertainty:
o macro and micro scale inter- and intra-variability,
o insufficiently known or variable loading,
o approximation of complicated physics

• subjective human interpretation

However…
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• Advanced numerical engineering tools ⇝ only useful when models are valid
o model validation and verification
o model updating

• Inclusion of uncertainties:

Model validity

does the deterministic model give results that are close 
enough to my experimental observations

can the experimental observations be interpreted as a 
likely realisation of my non-deterministic model
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• model validity interpretation
o modelling for exactness: bring model as close as possible to “reality”

⟶ what parameters do we tune? when is the result realistic? Is the problem well 
posed? is the solution unique?

o modelling for robustness & reliability: include uncertainty that covers observation
⟶ what parameters? or non-parametric? what variability is realistic?

5

Introduction

"A low-fidelity answer with known uncertainty bounds is more valuable than a high-
fidelity answer with unknown uncertainty bounds" [NASA White Paper, 2002]
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Introduction

• non-deterministic V&V
o verification deals with (reduces) error
o model uncertainty quantification (UQmod) ⟶ uncertainty on numerical side
o measurement uncertainty quantification (UQexp) ⟶ uncertainty on observations
o validation now about matching UQexp and Uqmod
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• Probability theory offers a complete framework to model variability
• Random variables 𝑿 = 𝑋!, 𝑋", … , 𝑋#! with support 𝐷$
• Probability that 𝑿 is less or equal than 𝒙 is modelled as joint probability distribution 

function 𝐹𝑿 𝒙 = 𝑃 𝑋! ≤ 𝑥!, 𝑋" ≤ 𝑥", … , 𝑋#! < 𝑥#! for 𝒙 ∈ 𝐷&
• Joint probability density function 𝑓$ is the derivative of 𝐹𝑿, i.e., 𝑓$ =

'
'&𝐹$(𝑥)

• Let ℳ:ℝ#! ↦ ℝ#" , 𝒙 → 𝒚 denote a function representing the numerical model under 
consideration

• 𝐹𝒀(𝒚) represents the joint cumulative distribution function of the responses

How to model these uncertainties?

nominal model

probabilistic input

probabilistic output

numerical probabilistic 
analysis

𝑥"
𝑥#
⋮
𝑥$!

𝒚
𝐹𝑿 𝒙

𝐹) 𝑦
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Reliability analysis

• Most simple case: strength and load are independent
• Load 

o the loading condition of the material 𝐿 = 𝑦(𝒙) (e.g., tensile force)
o Distributed as 𝐿~𝑓* 𝑙
o Moments 𝜇*, 𝜎*

• Strength
o Critical performance of the material 𝑆 = 𝑦+ (e.g., 𝑅,)
o Distributed as 𝑆~𝑓-(𝑠)
o Moments 𝜇-, 𝜎.

• Overlapping area: probability
of failure
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Reliability analysis

• In general multiple variable input 
quantities and failure modes

• Definition of performance function:
𝑍 = 𝑔(𝑿)

• Failure domain: region of the random 
variable space where 𝑔 ≤ 0

• Safe domain: region of the random 
variable space where 𝑔 > 0

• Limit state function: 𝑁 − 1 dimensional 
curve for which 𝑔 𝑋!, 𝑋", … , 𝑋# = 0

• Probability of Failure:

𝑃$ = 𝑃 𝑔 𝑋!, 𝑋", … , 𝑋# ≤ 0

𝑃% = 1 1…1
& 𝒙 ()

𝑓* 𝒙 𝑑𝑥!𝑑𝑥"…𝑑𝑥+
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• 𝑓𝑿 𝒙 needs to be estimated to perform reliability analysis
• However, estimation is complicated by:

o Imprecise measurements
o Small sample set sizes
o Incomplete expert elicitations
o Changing environmental conditions
o Vague or dubious information
o Expert assessment / experience
o Linguistic assessments
o Conditional probabilities observed under 

unclear conditions
o Only marginals are available
o …

à Mixtures of information from several sources with different levels of fidelity

Reliability analysis: challenge
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Overview



Imprecise 
probabilities
How to deal with data issues in reliability 
analysis?
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Classification and modelling of imprecise information
By origins of uncertainty

Aleatory uncertainty
• Irreducible uncertainty
• Caused by variability/fluctuations
• Property of the system
• Stochastic characteristics

à Traditional probabilistic models
à classic variability

Epistemic uncertainty
• Reducible uncertainty
• Caused by lack of knowledge
• Property of the analyst or analysis
• Inconsistency of information

à No specific model predefined

Both sources tend to occur at the same time. How to 
integrate them both in our calculations?
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• Formally, a p-box is defined as the set 
𝐹! 𝑥 ∈ 𝔽|𝐹𝑿 𝑥 ≤ 𝐹! 𝑥 ≤ 𝐹! 𝑥 , 𝑥 ∈ 𝐷!

• Epistemic uncertainty on 𝐹! 𝑥 is accounted for 
explicitly by assigning an interval 𝐹! 𝑥 , 𝐹!(𝑥)
for each value of 𝑥 ∈ 𝐷!

• Small epistemic uncertainty: 𝐹! 𝑥 , 𝐹!(𝑥) is a 
tight interval

à Large confidence in CDF and results

• Large epistemic uncertainty: 𝐹! 𝑥 , 𝐹!(𝑥) is a 
wide interval

à Low confidence in CDF and results
à collect more data

Probability boxes

Idea: provide set of possible distribution functions 𝐹𝑿(𝒙) bounded by lower CDF 𝐹𝑿 𝑥 ∈
𝔽 and upper CDF 𝐹𝑿 𝒙 ∈ 𝔽, with 𝔽 the set of all CDFs on 𝐷$ ⊆ ℝ
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Reliability analysis

nominal model

probabilistic input

probabilistic output

numerical probabilistic 
analysis

𝑝/ = E E…E
0 𝒙 23

𝑓$ 𝒙 𝑑𝑥!𝑑𝑥"…𝑑𝑥#
𝐹$

𝑥!

𝑝/
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Imprecise information

𝐹$

𝑥!

nominal model

probabilistic input

probabilistic output

numerical probabilistic 
analysis 𝑝/

Measure for “trustworthiness” of 
results

𝑝/ = min
4𝑿

E E…E
0 𝒙 23

𝑓$ 𝒙 𝑑𝑥!𝑑𝑥"…𝑑𝑥#

𝑝/ = max
4𝑿

E E…E
0 𝒙 23

𝑓$ 𝒙 𝑑𝑥!𝑑𝑥"…𝑑𝑥#



Propagation of p-
boxes



Research Seminar University of Sheffield

General idea

• Pure probabilistic context (i.e., only aleatory uncertainty):

𝒫 = 𝐸 ℋ 𝑋 = E
5!
ℋ 𝒙 𝑓𝑿 𝑥 𝑑𝒙

• In case 𝑿 represents a p-box, 𝒫 ≤ 𝒫 ≤ 𝒫 are obtained as:

𝒫 = min
4𝑿

E
5!
ℋ 𝒙 𝑓𝑿 𝑥 𝑑𝒙

𝒫 = max
4𝑿

E
5!
ℋ 𝒙 𝑓𝑿 𝑥 𝑑𝒙

• Optimization over all possible 𝑓𝑿 consistent with the definition of the p-box
• Nested optimization 

o Inner loop: reliability problem
o Outer loop: (non-convex) optimization problem

• Three classes of methods
o Double-loop approaches
o Decoupling approaches
o Surrogate modeling schemes
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• Engineering system represented by 
numerical model (e.g. finite elements)

• Model depends on inputs 𝑧 (forces, 
material properties, etc.)

• Response of interest 𝑟

Motivation – Deterministic Analysis

Input

Deterministic

Output

Model
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• Aleatory uncertainty of 
input modeled with 
probability distribution, 
depends on parameter 𝜃
(e.g. mean)

• Response must not 
exceed threshold 𝑟6

• Probability of undesirable 
behavior: 𝑝/

Motivation – Reliability Analysis

Input

DeterministicReliability

Output

Model
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• Epistemic 
uncertainty on 𝜃
modeled as 
interval 
(parametric p-
box)

• 𝑝/ belongs to an 
interval

Motivation – Interval Reliability Analysis

Input

DeterministicReliabilityInterval reliability

Output

Model
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• what we would like: decoupling of the uncertainty

Decoupling approaches

• Coping with aleatoric and epistemic uncertainty: huge challenge!

Deterministic 
model

AleatoricEpistemic

Deterministic 
model

Epistemic Deterministic 
model

Aleatoric
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Scope

• Linear systems subject to epistemic (𝜽.) and aleatory (𝒚) uncertainties
• Gaussian forces affected subject to (𝜽4) and aleatory (𝒛) uncertainty

response system force

Imprecise PSDImprecise Random field

Correlation length increases
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Operator Norm Theorem (1/2)

Input force Model

Response

Response

• Response 𝒓 is the result of stretching loading 𝒇(𝜽% , 𝒛) by 𝑨(𝜽, , 𝒚)
• Less stretching leads to smaller 𝒑𝑭; more stretching leads to higher 𝒑𝑭
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• The amount of stretching induced by 𝑨 can be bounded by 
operator norm theorem

• In this case, operator norm corresponds to maximum standard 
deviation of response 𝜎./0(𝜽)

Operator Norm Theorem (2/2)
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Deterministic 
model

Optimization
(epistemic 
parameters)

Deterministic 
model

Reliability
(aleatory
Parameters)

Determined 
deterministically via 

linearization
⇝ only required for 
stochastic system 

matrices

• Proposed approach involves:
− Two deterministic optimization problems
− Two reliability problems

Proposed approach
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Example: a six-story building

• 6 story building
o Reinforced concrete
o 9500 shell & beam elements

• QOI: inter-story drift
• Load: earthquake, which is modelled as stochastic 

process:
o Gaussian stochastic process
o Autocorrelation governed by modulated Clough-

Penzien spectrum:
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• Optima in operator norm correspond to optima in failure probability
• Large reduction in computational cost:

• Quasi Monte Carlo: 5.000.000 FE simulations
• Vertex analysis: 4.096.000 FE simulations

• Operator norm: 3500 FE simulations

Example: results

Factor 1000 gain 
in efficiency
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Further reading

• Faes, Matthias and Marcos A. Valdebenito. 2020. ‘Fully Decoupled Reliability-Based 
Design Optimization of Structural Systems Subject to Uncertain Loads’. Computer Methods 
in Applied Mechanics and Engineering 371: 113313.

• Faes, Matthias, Marcos A. Valdebenito, David Moens, and Michael Beer. 2020. ‘Bounding 
the First Excursion Probability of Linear Structures Subjected to Imprecise Stochastic 
Loading’. Computers & Structures 239: 106320.

• Faes, Matthias and Marcos A. Valdebenito. 2021. ‘Fully Decoupled Reliability-Based 
Optimization of Linear Structures Subject to Gaussian Dynamic Loading Considering 
Discrete Design Variables’. Mechanical Systems and Signal Processing 156: 107616.

• Faes, Matthias, Marcos A. Valdebenito, David Moens, and Michael Beer. 2021. ‘Operator 
Norm Theory as an Efficient Tool to Propagate Hybrid Uncertainties and Calculate 
Imprecise Probabilities’. Mechanical Systems and Signal Processing 152: 107482.

• Ni, Peihua et al. 2022. ‘Operator Norm-Based Statistical Linearization to Bound the First 
Excursion Probability of Nonlinear Structures Subjected to Imprecise Stochastic Loading’. 
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil 
Engineering 8(1): 04021086.

• Fina, Marc et al. 2023. ‘Bounding Imprecise Failure Probabilities in Structural Mechanics 
Based on Maximum Standard Deviation’. Structural Safety 101: 102293.

• Ni, Peihua, et al. 2023. ‘Probability of failure of nonlinear oscillators with fractional derivative 
elements subject to imprecise Gaussian loads‘. Publication in preparation
(Contact me for a copy of the draft) 



Research Seminar University of Sheffield

• Propagation of imprecise probabilities demands repeated simulations
• Numerical cost may grow rapidly
• Solution: replace model ℳ with a surrogate model that is cheaper to evaluate

o Polynomial chaos expansions
o Gaussian processes
o Support Vector Machines
o Artificial Neural Networks
o …

Surrogate Modeling

Polynomial ChaosGaussian Process

Numerical model
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• what we would like: a cheaper numerical model to evaluate

Surrogate modelling approaches

• Coping with aleatoric and epistemic uncertainty: huge challenge!

Deterministic 
model

AleatoricEpistemic

Surrogate 
model

AleatoricEpistemic

∼ min − [hour]

∼ sec
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• Key ingredient for training a surrogate is active learning

Surrogate Modeling: Adaptive Gaussian Process
Regression

Support domain

Model response

Uncertain parameter / 
design variable

(1) Design of experiments / 
full system analyses

(2) Interpolation & confidence 
bounds

(3) Active learning / locate 
critical point

(4) Additional system analysis

(5) Improve surrogate
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• Test example

Surrogate Modeling: Adaptive Gaussian Process
Regression

𝜀

𝜎

𝐸

𝑏𝐸

Input parameters
(intervals)

Numerical model
𝒚 = ℳ(𝜽) Response (interval)
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• Test example

Surrogate Modeling: Adaptive Gaussian Process
Regression

Response (interval)

Two orders of 
magnitude
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Further reading
• C. Dang, P. Wei, M. G. R. Faes, M. A. Valdebenito, and M. Beer, ‘Interval 

uncertainty propagation by a parallel Bayesian global optimization method’, Applied 
Mathematical Modelling, vol. 108, pp. 220–235, Aug. 2022, doi: 
10.1016/j.apm.2022.03.031.

• C. Dang, P. Wei, M. G. R. Faes, M. A. Valdebenito, and M. Beer, ‘Parallel adaptive 
Bayesian quadrature for rare event estimation’, Reliability Engineering & System 
Safety, vol. 225, p. 108621, Sep. 2022, doi: 10.1016/j.ress.2022.108621.

• C. Dang, P. Wei, M. G. R. Faes, and M. Beer, ‘Bayesian probabilistic propagation of 
hybrid uncertainties: Estimation of response expectation function, its variable 
importance and bounds’, Computers & Structures, vol. 270, p. 106860, Oct. 2022, 
doi: 10.1016/j.compstruc.2022.106860.

• C. Dang, M. A. Valdebenito, M. G. R. Faes, P. Wei, and M. Beer, ‘Structural 
reliability analysis: A Bayesian perspective’, Structural Safety, vol. 99, p. 102259, 
Nov. 2022, doi: 10.1016/j.strusafe.2022.102259.

• van Mierlo, C., Persoons, A., Faes, M., Moens, D. (2023). Robust design 
optimization of expensive stochastic simulators under lack-of-knowledge. 
ASCE/ASME Journal for Risk and Uncertainty in Engineering Systems, Part B: 
Mechanical Engineering. vol. 9(2). p. 021205. 10.1115/1.4056950

• Van Mierlo, C., Persoons, A., Faes, M., Moens, D. (2023). Robust design 
optimisation under lack-of-knowledge uncertainty. Computers & Structures. Volume 
275, 106910 10.1016/j.compstruc.2022.106910

https://doi.org/10.1016/j.apm.2022.03.031
https://doi.org/10.1016/j.ress.2022.108621
https://doi.org/10.1016/j.compstruc.2022.106860
https://doi.org/10.1016/j.strusafe.2022.102259
https://doi.org/10.1115/1.4056950
https://doi.org/10.1016/j.compstruc.2022.106910


Conclusions
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Conclusions
• Traditional probabilistic approaches may not be sufficient to tackle uncertainty in 

engineering design in a consistent way
• Non-traditional approaches have shown their merit

o Extreme scarce or non-probabilistic problems: interval analysis
o Incomplete data on probabilistic descriptors: p-boxes

• Many efficient and flexible propagation schemes have been introduced to tackle these 
problems

• Further reading:
o General overview on imprecise probabilities:  Beer, M., Ferson, S., & Kreinovich, V. 

(2013). Imprecise probabilities in engineering analyses. Mechanical Systems and Signal 
Processing, 37(1–2), 4–29. https://doi.org/http://dx.doi.org/10.1016/j.ymssp.2013.01.024

o Review paper on interval and fuzzy analysis: Faes, M., & Moens, D. (2020). Recent 
Trends in the Modeling and Quantification of Non-probabilistic Uncertainty. Archives of 
Computational Methods in Engineering, 27(3), 633–671. https://doi.org/10.1007/s11831-
019-09327-x

o Overview of computational methods for p-box analysis: Faes, M., Daub, M., Marelli, S., 
Patelli, E., Beer, M. (2021). Engineering analysis with probability boxes: a review on 
computational methods. Structural Safety, 93, 102092. 
https://doi.org/10.1016/j.strusafe.2021.102092
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