To content
Fakultät Maschinenbau
Head of Institute

Prof. Dr. Jörn Mosler

Portrait Jörn Mosler © Jörn Mosler

Curriculum Vitae

since 09/2011

Professor, Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund, Germany
10/2011-06/2016

Senior scientist, Department "Simulation of Solids and Structures", Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Germany

04/2008-09/2011 Head of department "Simulation of Solids and Structures", Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Germany
05/2008-08/2011

Professor, Computational Mechanics, Institute for Materials Science, Department of Engineering, Christian-Albrechts-Universität zu Kiel, Germany

04/2007 Habilitation (for Mechanics), Ruhr University Bochum, Germany
02/2007-03/2008 Assistant Professor (Jun.-Prof.), Computational Mechanics, Department of Civil Engineering, Ruhr University Bochum, Germany
11/2005-01/2007 Senior Engineer, Institute of Mechanics, Ruhr University Bochum, Germany
11/2004-10/2005

Caltech postdoctoral scholarship and DFG-scholarship, Computational Solid Mechanics Group, Graduate Aeronautical Laboratories, California Institute of Technology, USA

09/2004 Intermediate Diploma in Mathematics, Ruhr University Bochum, Germany
01/2003-11/2004 Postdoctoral Assistant Lecturer, Institute of Mechanics, Ruhr University Bochum, Germany
12/2002 Ph.D. in Engineering (Dr.-Ing.), Ruhr University Bochum, Germany
10/1998-12/2002 Assistant Lecturer, Institute for Structural Mechanics, Ruhr University Bochum, Germany
10/1994-10/1998 Civil Engineering, Ruhr University Bochum, Germany

Article journal

2024

[1]
G.-L. Geuken, J. Mosler, and P. Kurzeja, ‘Incorporating sufficient physical information into artificial neural networks: a guaranteed improvement via physics-based Rao-Blackwellization’, Computer methods in applied mechanics and engineering, vol. 423, Art. no. 116848, Apr. 2024, doi: 10.1016/j.cma.2024.116848.
[2]
H. Wilbuer, P. Kurzeja, and J. Mosler, ‘Phase field modeling of hyperelastic material interfaces: theory, implementation and application to phase transformations’, Computer methods in applied mechanics and engineering, vol. 426, Art. no. 116972, Jun. 2024, doi: 10.1016/j.cma.2024.116972.
[3]
F. Rörentrop, S. Boddin, D. Knees, and J. Mosler, ‘A time-adaptive finite element phase-field model suitable for rate-independent fracture mechanics’, Computer methods in applied mechanics and engineering, vol. 431, Art. no. 117240, 2024, doi: 10.1016/j.cma.2024.117240.
[4]
A. Niehüser and J. Mosler, ‘Microscale modeling of damage mechanisms in dual‐phase steel DP800’, Proceedings in applied mathematics and mechanics, vol. 24, no. 2, Art. no. e202400012, 2024, doi: 10.1002/pamm.202400012.

2023

[1]
G.-L. Geuken, J. Mosler, and P. Kurzeja, ‘Optimizing artificial neural networks for mechanical problems by physics‐based Rao‐Blackwellization: example of a hyperelastic microsphere model’, Proceedings in applied mathematics and mechanics, vol. 22, no. 1, Art. no. e202200325, 2023, doi: 10.1002/pamm.202200325.
[2]
A. Niehüser and J. Mosler, ‘Numerically efficient and robust interior-point algorithm for finite strain rate-independent crystal plasticity’, Computer methods in applied mechanics and engineering, vol. 416, Art. no. 116392, Nov. 2023, doi: 10.1016/j.cma.2023.116392.
[3]
K. Langenfeld, P. Kurzeja, and J. Mosler, ‘On the curvature dependence of gradient damage models: control and opportunities’, Computer methods in applied mechanics and engineering, vol. 410, Art. no. 115987, May 2023, doi: 10.1016/j.cma.2023.115987.
[4]
H. Lammen, S. Conti, and J. Mosler, ‘A finite deformation phase field model suitable for cohesive fracture’, Journal of the mechanics and physics of solids, vol. 178, Art. no. 105349, Jun. 2023, doi: 10.1016/j.jmps.2023.105349.
[5]
V. Fohrmeister and J. Mosler, ‘Rate-independent gradient-enhanced crystal plasticity theory: robust algorithmic formulations based on incremental energy minimization’, International journal of solids and structures, vol. 288, Art. no. 112622, Dec. 2023, doi: 10.1016/j.ijsolstr.2023.112622.

2022

[1]
K. Langenfeld, P. Kurzeja, and J. Mosler, ‘How regularization concepts interfere with (quasi-)brittle damage: a comparison based on a unified variational framework’, Continuum mechanics and thermodynamics, vol. 34, no. 6, pp. 1517–1544, 2022, doi: 10.1007/s00161-022-01143-2.

2021

[1]
P. Kurzeja, C. Sievers, L. Brendel, and J. Mosler, ‘Ritz‐type surface homogenization: from atomistic to continuum surface models of copper despite imperfect bulk models’, Proceedings in applied mathematics and mechanics, vol. 20, no. 1, p. e202000193, 2021, doi: 10.1002/pamm.202000193.
[2]
K. Langenfeld, K. Möhring, F. Walther, and J. Mosler, ‘Modeling gradient‐enhanced anisotropic ductile damage: Application to low cycle fatigue’, Proceedings in applied mathematics and mechanics, vol. 20, no. 1, p. e202000157, 2021, doi: 10.1002/pamm.202000157.
[3]
H. Wilbuer, H. Lammen, and J. Mosler, ‘Phase field modeling with deformation‐dependent interface energies’, Proceedings in applied mathematics and mechanics, vol. 21, no. 1, Art. no. e202100114, 2021, doi: 10.1002/pamm.202100114.
[4]
A. Bartels, P. Kurzeja, and J. Mosler, ‘Cahn–Hilliard phase field theory coupled to mechanics: fundamentals, numerical implementation and application to topology optimization’, Computer methods in applied mechanics and engineering, vol. 383, Art. no. 113918, 2021, doi: 10.1016/j.cma.2021.113918.
[5]
T. Heitbreder, P. Kurzeja, and J. Mosler, ‘On general imperfect interfaces with spatially non-constant displacement jumps’, International journal of solids and structures, vol. 232, Art. no. 111068, Dec. 2021, doi: 10.1016/j.ijsolstr.2021.111068.
[6]
C. Sievers, J. Mosler, and P. Kurzeja, ‘Projection vs. relaxation of adjacent bulk deformation for surface modeling: theoretical and numerical aspects’, International journal of solids and structures, vol. 226–227, Art. no. 111084, Sep. 2021, doi: 10.1016/j.ijsolstr.2021.111084.

2020

[1]
C. Sievers, J. Mosler, L. Brendel, and P. Kurzeja, ‘Computational homogenization of material surfaces: from atomistic simulations to continuum models’, Computational materials science, vol. 175, p. 109431, 2020, doi: 10.1016/j.commatsci.2019.109431.
[2]
K. Langenfeld and J. Mosler, ‘A micromorphic approach for gradient-enhanced anisotropic ductile damage’, Computer methods in applied mechanics and engineering, vol. 360, p. 112717, 2020, doi: 10.1016/j.cma.2019.112717.
[3]
K. Langenfeld et al., ‘Influence of anisotropic damage evolution on cold forging’, Production engineering, vol. 14, no. 1, pp. 115–121, 2020, doi: 10.1007/s11740-019-00942-y.

2019

[1]
T. Heitbreder and J. Mosler, ‘On higher‐order interface models’, Proceedings in applied mathematics and mechanics, vol. 19, no. 1, p. e201900315, 2019, doi: 10.1002/pamm.201900315.
[2]
H. Lammen and J. Mosler, ‘On the approximation of surface elasticity theory by means of phase‐field theory’, Proceedings in applied mathematics and mechanics, vol. 19, no. 1, p. e201900375, 2019, doi: 10.1002/pamm.201900375.

2018

[1]
K. Langenfeld, P. Junker, and J. Mosler, ‘Quasi-brittle damage modeling based on incremental energy relaxation combined with a viscous-type regularization’, Continuum mechanics and thermodynamics, vol. 30, no. 5, pp. 1125–1144, May 2018, doi: 10.1007/s00161-018-0669-z.
[2]
V. Fohrmeister, A. Bartels, and J. Mosler, ‘Variational updates for thermomechanically coupled gradient-enhanced elastoplasticity: implementation based on hyper-dual numbers’, Computer methods in applied mechanics and engineering, vol. 339, pp. 239–261, 2018, doi: 10.1016/j.cma.2018.04.047.
[3]
T. Heitbreder, N. S. Ottosen, M. Ristinmaa, and J. Mosler, ‘On damage modeling of material interfaces: numerical implementation and computational homogenization’, Computer methods in applied mechanics and engineering, vol. 337, pp. 1–27, 2018, doi: 10.1016/j.cma.2018.03.023.
[4]
V. Fohrmeister, G. Díaz, and J. Mosler, ‘Classic crystal plasticity theory vs crystal plasticity theory based on strong discontinuities: theoretical and algorithmic aspects’, International journal for numerical methods in engineering, 2018, Published, doi: 10.1002/nme.6000.
[5]
P. Kurzeja, C. Sievers, and J. Mosler, ‘Improving constitutive equations in multiscale modelling by means of the sufficiency criterion using the example of nano wire contraction’, Proceedings in applied mathematics and mechanics, vol. 18, no. 1, Art. no. e201800292, Dec. 2018, doi: 10.1002/pamm.201800292.

2017

[1]
B. Kiefer, T. Furlan, and J. Mosler, ‘A numerical convergence study regarding homogenization assumptions in phase field modeling’, International journal for numerical methods in engineering, vol. 112, no. 9, pp. 1097–1128, May 2017, doi: 10.1002/nme.5547.
[2]
A. Javili, N. S. Ottosen, M. Ristinmaa, and J. Mosler, ‘Aspects of interface elasticity theory’, Mathematics and mechanics of solids, Apr. 2017, Published, doi: 10.1177/1081286517699041.
[3]
T. Heitbreder, N. S. Ottosen, M. Ristinmaa, and J. Mosler, ‘Consistent elastoplastic cohesive zone model at finite deformations – Variational formulation’, International journal of solids and structures, vol. 106–107, pp. 284–293, 2017, doi: 10.1016/j.ijsolstr.2016.10.027.
[4]
A. Bartels and J. Mosler, ‘Efficient variational constitutive updates for Allen–Cahn-type phase field theory coupled to continuum mechanics’, Computer methods in applied mechanics and engineering, vol. 317, pp. 55–83, 2017, doi: 10.1016/j.cma.2016.11.024.
[5]
A. Bartels and J. Mosler, ‘On the numerical implementation of thermomechanically coupled distortional hardening’, International journal of plasticity, vol. 96, pp. 182–209, 2017, doi: 10.1016/j.ijplas.2017.05.003.
[6]
A. Javili, P. Steinmann, and J. Mosler, ‘Micro-to-macro transition accounting for general imperfect interfaces’, Computer methods in applied mechanics and engineering, vol. 317, pp. 274–317, 2017, doi: 10.1016/j.cma.2016.12.025.

2016

[1]
N. S. Ottosen, M. Ristinmaa, and J. Mosler, ‘Framework for non-coherent interface models at finite displacement jumps and finite strains’, Journal of the mechanics and physics of solids, vol. 90, pp. 124–141, 2016, doi: 10.1016/j.jmps.2016.02.034.
[2]
M. Canadija and J. Mosler, ‘A variational formulation for thermomechanically coupled low cycle fatigue at finite strains’, International journal of solids and structures, vol. 100–101, pp. 388–398, 2016, doi: 10.1016/j.ijsolstr.2016.09.009.

2015

[1]
A. Bartels, T. Bartel, M. Čanađija, and J. Mosler, ‘On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials’, Journal of the mechanics and physics of solids, vol. 82, pp. 218–234, 2015, doi: 10.1016/j.jmps.2015.04.011.
[2]
E. Borukhovich, P. S. Engels, J. Mosler, O. Shchyglo, and I. Steinbach, ‘Large deformation framework for phase-field simulations at the mesoscale’, Computational materials science, vol. 108, pp. 367–373, 2015, doi: 10.1016/j.commatsci.2015.06.021.
[3]
N. S. Ottosen, M. Ristinmaa, and J. Mosler, ‘Fundamental physical principles and cohesive zone models at finite displacements: limitations and possibilities’, International journal of solids and structures, vol. 53, pp. 70–79, 2015, doi: 10.1016/j.ijsolstr.2014.10.020.

2014

[1]
B. Shi, A. Bartels, and J. Mosler, ‘On the thermodynamically consistent modeling of distortional hardening: a novel generalized framework’, International journal of plasticity, vol. 63, pp. 170–182, 2014, doi: 10.1016/j.ijplas.2014.05.008.
[2]
J. Mosler, O. Shchyglo, and H. Montazer Hojjat, ‘A novel homogenization method for phase field approaches based on partial rank-one relaxation’, Journal of the mechanics and physics of solids, vol. 68, pp. 251–266, 2014, doi: 10.1016/j.jmps.2014.04.002.
[3]
C. Sievers, T. Clausmeyer, and J. Mosler, ‘Macroscopic modeling of material interfaces based on atomistic descriptions’, Proceedings in applied mathematics and mechanics, vol. 14, no. 1, pp. 361–362, 2014, doi: 10.1002/pamm.201410168.

2013

[1]
M. N. Mekonen, D. Steglich, J. Bohlen, L. Stutz, D. Letzig, and J. Mosler, ‘Experimental and numerical investigation of Mg alloy sheet formability’, Materials science & engineering A, vol. 586, pp. 204–214, 2013, doi: 10.1016/j.msea.2013.07.088.
[2]
N. Bleier and J. Mosler, ‘A hybrid variationally consistent homogenization approach based on Ritz’s method’, International journal for numerical methods in engineering, vol. 94, no. 7, pp. 625–647, 2013, doi: 10.1016/j.ijplas.2017.05.003.
[3]
I. Scheider, T. Xiao, N. Huber, and J. Mosler, ‘On the interaction between different size effects in fibre reinforced PMMA: towards composites with optimised fracture behaviour’, Computational materials science, vol. 80, pp. 35–42, 2013, doi: 10.1016/j.commatsci.2013.04.027.
[4]
I. Scheider, Y. Chen, A. Hinz, N. Huber, and J. Mosler, ‘Size effects in short fibre reinforced composites’, Engineering fracture mechanics, vol. 100, pp. 17–27, 2013, doi: 10.1016/j.engfracmech.2012.05.005.
[5]
B. Shi and J. Mosler, ‘On the macroscopic description of yield surface evolution by means of distortional hardening models: application to magnesium’, International journal of plasticity, vol. 44, pp. 1–22, 2013, doi: 10.1016/j.ijplas.2012.11.007.
[6]
N. Bleier and J. Mosler, ‘A hybrid variationally consistent homogenization approach based on Ritz’s method’, International journal for numerical methods in engineering, vol. 94, no. 7, pp. 625–647, 2013, doi: 10.1002/nme.4465.

2012

[1]
S. Khan, O. Kintzel, and J. Mosler, ‘Experimental and numerical lifetime assessment of Al 2024 sheet’, International journal of fatigue, vol. 37, pp. 112–122, 2012, doi: 10.1016/j.ijfatigue.2011.09.010.
[2]
S. Khan, F. Wilde, F. Beckmann, and J. Mosler, ‘Low cycle fatigue damage mechanism of the lightweight alloy Al2024’, International journal of fatigue, vol. 38, pp. 92–99, 2012, doi: 10.1016/j.ijfatigue.2011.11.009.
[3]
N. Bleier and J. Mosler, ‘Efficient variational constitutive updates by means of a novel parameterization of the flow rule’, International journal for numerical methods in engineering, vol. 89, no. 9, pp. 1120–1143, 2012, doi: 10.1002/nme.3280.
[4]
M. N. Mekonen, D. Steglich, J. Bohlen, D. Letzig, and J. Mosler, ‘Mechanical characterization and constitutive modeling of Mg alloy sheets’, Materials science & engineering A, vol. 540, pp. 174–186, 2012, doi: 10.1016/j.msea.2012.01.122.
[5]
M. Homayonifar and J. Mosler, ‘Efficient modeling of microstructure evolution in magnesium by energy minimization’, International journal of plasticity, vol. 28, no. 1, pp. 1–20, 2012, doi: 10.1016/j.ijplas.2011.05.011.
[6]
J. Mosler and M. Homayonifar, ‘Variational constitutive updates for microstructure evolution in hcp metals’, GAMM-Mitteilungen, vol. 35, no. 1, pp. 43–58, 2012, doi: 10.1002/gamm.201210004.
[7]
J. Mosler, ‘Preface of the guest-editor’, GAMM-Mitteilungen, vol. 35, no. 1, pp. 6–7, Mar. 2012, doi: 10.1002/gamm.201210001.

2011

[1]
A. Arnold, O. T. Bruhns, and J. Mosler, ‘An efficient algorithm for the inverse problem in elasticity imaging by means of variational r-adaption’, Physics in medicine and biology, vol. 56, no. 14, pp. 4239–4265, 2011, doi: 10.1088/0031-9155/56/14/004.
[2]
J. Mosler, L. Stanković, and R. Radulović, ‘Efficient modeling of localized material failure by means of a variationally consistent embedded strong discontinuity approach’, International journal for numerical methods in engineering, vol. 88, no. 10, pp. 1008–1041, 2011, doi: 10.1002/nme.3210.
[3]
M. Čanađija and J. Mosler, ‘On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization’, International journal of solids and structures, vol. 48, no. 7–8, pp. 1120–1129, 2011, doi: 10.1016/j.ijsolstr.2010.12.018.
[4]
J. Mosler and I. Scheider, ‘A thermodynamically and variationally consistent class of damage-type cohesive models’, Journal of the mechanics and physics of solids, vol. 59, no. 8, pp. 1647–1668, 2011, doi: 10.1016/j.jmps.2011.04.012.
[5]
O. Kintzel and J. Mosler, ‘An incremental minimization principle suitable for the analysis of low cycle fatigue in metals: a coupled ductile–brittle damage model’, Computer methods in applied mechanics and engineering, vol. 200, no. 45–46, pp. 3127–3138, 2011, doi: 10.1016/j.cma.2011.07.006.
[6]
M. Homayonifar and J. Mosler, ‘On the coupling of plastic slip and deformation-induced twinning in magnesium: a variationally consistent approach based on energy minimization’, International journal of plasticity, vol. 27, no. 7, pp. 983–1003, 2011, doi: 10.1016/j.ijplas.2010.10.009.
[7]
R. Radulović, O. T. Bruhns, and J. Mosler, ‘Effective 3D failure simulations by combining the advantages of embedded Strong Discontinuity Approaches and classical interface elements’, Engineering fracture mechanics, vol. 78, no. 12, pp. 2470–2485, 2011, doi: 10.1016/j.engfracmech.2011.06.007.

2010

[1]
J. Mosler, ‘Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening’, Computer methods in applied mechanics and engineering, vol. 199, no. 45–48, pp. 2753–2764, 2010, doi: 10.1016/j.cma.2010.03.025.
[2]
A. Arnold, S. Reichling, O. T. Bruhns, and J. Mosler, ‘Efficient computation of the elastography inverse problem by combining variational mesh adaption and a clustering technique’, Physics in medicine and biology, vol. 55, no. 7, pp. 2035–2056, 2010, doi: 10.1088/0031-9155/55/7/016.
[3]
O. Kintzel, S. Khan, and J. Mosler, ‘A novel isotropic quasi-brittle damage model applied to LCF analyses of Al2024’, International journal of fatigue, vol. 32, no. 12, pp. 1948–1959, 2010, doi: 10.1016/j.ijfatigue.2010.07.001.
[4]
S. Khan, A. Vyshnevskyy, and J. Mosler, ‘Low cycle lifetime assessment of Al2024 alloy’, International journal of fatigue, vol. 32, no. 8, pp. 1270–1277, 2010, doi: 10.1016/j.ijfatigue.2010.01.014.
[5]
J. Mosler and O. T. Bruhns, ‘On the implementation of rate-independent standard dissipative solids at finite strain: variational constitutive updates’, Computer methods in applied mechanics and engineering, vol. 199, no. 9–12, pp. 417–429, 2010, doi: 10.1016/j.cma.2009.07.006.
[6]
M. Homayonifar and J. Mosler, ‘Characterization of micro-mechanical deformation systems of magnesium based on energy minimization’, Technische Mechanik, vol. 30, no. 1–3, pp. 146–156, 2010.
[7]
J. Mosler, ‘On variational updates for non-associative kinematic hardening of Armstrong-Frederick-type’, Technische Mechanik, vol. 30, no. 1–3, pp. 244–251, 2010.
[8]
O. Kintzel and J. Mosler, ‘A coupled isotropic elasto-plastic damage model based on incremental minimization principles’, Technische Mechanik, vol. 30, no. 1–3, pp. 177–184, 2010.

2009

[1]
J. Mosler and O. T. Bruhns, ‘Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split’, International journal of solids and structures, vol. 46, no. 7–8, pp. 1676–1684, 2009, doi: 10.1016/j.ijsolstr.2008.12.008.
[2]
J. Mosler and M. Ortiz, ‘An error-estimate-free and remapping-free variational mesh refinement and coarsening method for dissipative solids at finite strains’, International journal for numerical methods in engineering, vol. 77, no. 3, pp. 437–450, 2009, doi: 10.1002/nme.2428.
[3]
J. Mosler and F. Cirak, ‘A variational formulation for finite deformation wrinkling analysis of inelastic membranes’, Computer methods in applied mechanics and engineering, vol. 198, no. 27–29, pp. 2087–2098, 2009, doi: 10.1016/j.cma.2009.02.001.

2008

[1]
J. Mosler, ‘A novel variational algorithmic formulation for wrinkling at finite strains based on energy minimization: application to mesh adaption’, Computer methods in applied mechanics and engineering, vol. 197, no. 9–12, pp. 1131–1146, 2008, doi: 10.1016/j.cma.2007.10.004.

2007

[1]
J. Mosler and M. Ortiz, ‘Variational h-adaption in finite deformation elasticity and plasticity’, International journal for numerical methods in engineering, vol. 72, no. 5, pp. 505–523, 2007, doi: 10.1002/nme.2011.

2006

[1]
J. Mosler and M. Ortiz, ‘On the numerical implementation of variational arbitrary Lagrangian–Eulerian (VALE) formulations’, International journal for numerical methods in engineering, vol. 67, no. 9, pp. 1272–1289, 2006, doi: 10.1002/nme.1621.
[2]
J. Mosler, ‘Modeling strong discontinuities at finite strains: a novel numerical implementation’, Computer methods in applied mechanics and engineering, vol. 195, no. 33–36, pp. 4396–4419, 2006, doi: 10.1016/j.cma.2005.09.003.

2005

[1]
J. Mosler, ‘On advanced solution strategies to overcome locking effects in strong discontinuity approaches’, International journal for numerical methods in engineering, vol. 63, no. 9, pp. 1313–1341, 2005, doi: 10.1002/nme.1329.
[2]
J. Mosler, ‘Numerical analyses of discontinuous material bifurcation: strong and weak discontinuities’, Computer methods in applied mechanics and engineering, vol. 194, no. 9–11, pp. 979–1000, 2005, doi: 10.1016/j.cma.2004.06.018.
[3]
J. Mosler, ‘A novel algorithmic framework for the numerical implementation of locally embedded strong discontinuities’, Computer methods in applied mechanics and engineering, vol. 194, no. 45–47, pp. 4731–4757, 2005, doi: 10.1016/j.cma.2004.11.015.
[4]
J. Mosler, ‘On the efficient implementation of an elastoplastic damage model for large-scale analyses of material failure: a multiscale approach’, Computers & structures, vol. 83, no. 4–5, pp. 369–382, 2005, doi: 10.1016/j.compstruc.2004.08.015.

2004

[1]
J. Mosler and G. Meschke, ‘Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias’, Computer methods in applied mechanics and engineering, vol. 193, no. 30–32, pp. 3351–3375, 2004, doi: 10.1016/j.cma.2003.09.022.
[2]
J. Mosler, ‘On the modeling of highly localized deformations induced by material failure: the strong discontinuity approach’, Archives of computational methods in engineering, vol. 11, no. 4, pp. 389–446, 2004, doi: 10.1007/bf02736230.
[3]
J. Mosler and O. T. Bruhns, ‘A 3D anisotropic elastoplastic-damage model using discontinuous displacement fields’, International journal for numerical methods in engineering, vol. 60, no. 5, pp. 923–948, 2004, doi: 10.1002/nme.1004.

2003

[1]
J. Mosler and G. Meschke, ‘3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations’, International journal for numerical methods in engineering, vol. 57, no. 11, pp. 1553–1576, 2003, doi: 10.1002/nme.731.

Chapter in conference

2013

[1]
R. Ostwald et al., ‘Modeling and simulation of solid materials’, in Functionally graded materials in industrial mass production, [vol. 1], 2013, pp. 113–128.

2011

[1]
M. Nebebe, J. Bohlen, D. Steglich, and J. Mosler, ‘Numerical simulation of forming limit test for AZ31 at 200°C’, in Sheet Metal 2011, Leuven, Mar. 2011, vol. 473, pp. 468–473. doi: 10.4028/www.scientific.net/kem.473.468.

2010

[1]
J. Mosler and O. T. Bruhns, ‘On the implementation of variational constitutive updates at finite strains’, in IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Bochum, 2010, vol. 21, pp. 199–208. doi: 10.1007/978-90-481-9195-6_15.

2009

[1]
J. Mosler, ‘A variationally consistent approach for crack propagation based on configurational forces’, in IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics, 2009, 1st ed., vol. 17, pp. 239–247. doi: 10.1007/978-90-481-3447-2_22.

2003

[1]
P. Dumstorff, J. Mosler, and G. Meschke, ‘Advanced discretization methods for cracked structures: the strong discontinuity approach vs. the extended finite element method’, in Computational plasticity VII, Barcelona, 2003, 1. ed., Published.
[2]
J. Mosler and G. Meschke, ‘Numerical analysis of anchor pull-out tests using a rotating embedded crack model’, in Computational plasticity VII, Barcelona, 2003, 1. ed., Published.

2002

[1]
J. Mosler and G. Meschke, ‘A comparison of embedded discontinuity approaches with fracture energy based smeared crack models’, in Proceedings CD of the Fifth World Congress on Computational Mechanics, 2002, Published.

2001

[1]
J. Mosler and G. Meschke, ‘Analysis of mode I failure in brittle materials using the strong discontinuity approach with higher order elements’, in Solids, structures and coupled problems in engineering, Cracow, 2001, Published. [Online]. Available: http://melmac.sd.rub.de/pdf/mosler2001a.pdf
[2]
J. Mosler and G. Meschke, ‘An elastoplastic-damage model for quasi brittle materials in the framework of the strong discontinuity approach’, in Fracture mechanics of concrete structures, 2001, pp. 817–822.

2000

[1]
J. Mosler and G. Meschke, ‘3D FE analysis of cracks by means of the strong discontinuity approach’, in ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, 2000, Published.

Chapter

2023

[1]
H. A. Mang, R. Lackner, G. Meschke, and J. Mosler, ‘Computational modeling of concrete structures’, in Comprehensive structural integrity, 2nd ed., F. M. H. Aliabadi and W. O. Soboyejo, Eds. San Diego: Elsevier Science & Technology, 2023, pp. 490–563. doi: 10.1016/b978-0-12-822944-6.00145-6.

2003

[1]
H. A. Mang, R. Lackner, G. Meschke, and J. Mosler, ‘3.10 - Computational modeling of concrete structures’, in Comprehensive structural integrity, I. Milne, Ed. Amsterdam: Elsevier, 2003, pp. 541–606. doi: 10.1016/b0-08-043749-4/03009-3.

Monograph

2007

[1]
J. Mosler, On the numerical modeling of localized material failure at finite strains by means of variational mesh adaption and cohesive elements. Bochum: Univ., Inst. für Mechanik, 2007. [Online]. Available: http://www.climate-service-center.de/imperia/md/content/gkss/institut_fuer_werkstoffforschung/wms/habil.pdf

2003

[1]
J. Mosler, Finite Elemente mit sprungstetigen Abbildungen des Verschiebungsfeldes für numerische Analysen lokalisierter Versagenszustände in Tragwerken. Bochum: Univ., Inst. für Mechanik, 2003. [Online]. Available: http://www1.am.bi.ruhr-uni-bochum.de/ifm/IFM-130.pdf

Part of a web resource

2025

[1]
G.-L. Geuken, P. Kurzeja, J. Mosler, and D. Wiedemann, ‘Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies’, 2025.

2023

[1]
G.-L. Geuken, J. Mosler, and P. Kurzeja, ‘Incorporating sufficient physical information into artificial neural networks: a guaranteed improvement via physics-based Rao-Blackwellization’, 2023.

2022

[1]
S. Boddin, F. Rörentrop, D. Knees, and J. Mosler, ‘Approximation of balanced viscosity solutions of a rate-independent damage model by combining alternate minimization with a local minimization algorithm’, 2022.