Prof. Dr. Andreas Menzel
Phone
Office
MBI, Room 103
ORCiD
Curriculum Vitae
since 10/2007 | Professor, Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund, Germany |
since 09/2007 | Professor, Division of Solid Mechanics, Lund University, Sweden |
10/2006-09/2007 | Temporary Professor, Institute of Mechanics and Control Engineering,Department of Mechanical Engineering, University of Siegen, Germany |
05/2006 | Habilitation (for Mechanics), TU Kaiserslautern, Germany |
06/2002-09/2006 | Research Associate, Chair of Applied Mechanics,Department of Mechanical Engineering, TU Kaiserslautern, Germany |
02/2002 | Ph.D. in Engineering (Dr.-Ing.), TU Kaiserslautern, Germany |
10/1997-05/2002 | Research Assistant, Chair of Applied Mechanics,Department of Mechanical Engineering, TU Kaiserslautern, Germany |
06/1997-09/1997 | Research Assistant, Institute of Structural and Computational Mechanics, Department of Civil Engineering, Leibniz University Hannover, Germany |
04/1997 | Diploma degree (Dipl.-Ing.), Leibniz University Hannover, Germany |
10/1992-04/1997 | Civil Engineering, Leibniz University Hannover, Germany |
Publications
2025
M. Schewe, T. Bartel, and A. Menzel.
Comparison of elements and state-variable transfer methods for quasi-incompressible material behavior in the Particle Finite Element Method.
Comput. Mech, 2025.
doi:10.1007/s00466-024-02531-y
D. Güzel, T. Kaiser, and A. Menzel.
A computational multscale approach towards the modeling of microstructures with material interfaces in electrical conductors.
Math. mech. Solids, page 1202721, 2025.
doi:10.1177/10812865231202721
2024
D. Güzel, T. Furlan, T. Kaiser, and A. Menzel.
Neper-Mosaic: Seamless generation of periodic representative volume elements on unit domains.
SoftwareX, 28:101912, 2024.
doi:10.1016/j.softx.2024.101912
D. Güzel, T. Kaiser, H. Bishara, G. Dehm, and A. Menzel.
Revisiting Andrews method and grain boundary resistivity from a computational multiscale perspective.
Mech. Mat., 198:105115, 2024.
doi:10.1016/j.mechmat.2024.105115
M. Harnisch, T. Bartel, L. Weyergraf, A. Menzel and B. Schweizer.
Data-driven simulation of functional fatigue in shape memory alloy wires2.
Proc. Appl. Math. Mech. 24:e202400079, 2024.
doi:10.1002/pamm.202400079
L. Sobisch, T. Kaiser, and A. Menzel.
A finite element framework for thermo-mechanically coupled gradient-enhanced damage formulations.
Proc. Appl. Math. Mech. 24:e202400030, 2024.
doi:10.1002/pamm.202400030
J. Gerlach, R. Schulte, A. Schowtjak, T. Clausmeyer, R. Ostwald, A.E. Tekkaya, and A. Menzel.
Enhancing damage prediction in bulk metal forming through machine learning-assisted parameter identification.
Arch. Appl. Mech, 94:2217-2242, 2024.
doi:10.1007/s00419-024-02634-1
I. Noll, T. Bartel, and A. Menzel.
A thermodynamically consistent phase transformation model for multiphase alloys - application to Ti6Al4V in laser powder bed fusion processes.
Comput. Mech, 74:1319-1338, 2024.
doi:10.1007/s00466-024-02479-z
C. Witt, T. Kaiser, and A. Menzel.
An IGA-FEA model for flexoelectricity-induced healing of microcracks in cortical bone.
Comput. Methods Appl. Mech. Engrg., 425:116919, 2024.
doi:10.1016/j.cma.2024.116919
T. Kaiser, N. von der Höh, and A. Menzel.
Computational multiscale modeling of material interfaces in electrical conductors.
J. Mech. Phys. Solids, 186:105601, 2024
doi:10.1016/j.jmps.2024.105601
L. Sobisch, T. Kaiser, T. Furlan, and A. Menzel.
A user material approach for the solution of multi-field problems in Abaqus: Theoretical foundations, gradient-enhanced damage mechanics and thermo-mechanical coupling.
Finite Elem. Anal. Des., 232:104105, 2024.
doi:10.1016/j.finel.2023.104105
2023
M. Böddecker and A. Menzel.
A large strain thermoplasticity model including recovery, recrystallization and grain size effects.
Proc. Appl. Math. Mech. 23(4):e202300282, 2023.
doi:10.1002/pamm.202300282
D. Güzel, T. Kaiser, L. Lücker, N. Baak, F. Walther, and A. Menzel.
Characterization of damage by means of electrical measurements: Numerical predictions.
Proc. Appl. Math. Mech. 23(2):e202300013, 2023.
doi:10.1002/pamm.202300013
M. Böddecker, M.G.R. Faes, A. Menzel, and M.A. Valdebenito.
Effect of uncertainty of material parameters on stress triaxiality and lode angle in finite elasto-plasticity - a variance-based global sensitivity analysis.
Adv. Ind. Manuf. Eng, 7:100128, 2023.
doi:10.1016/j.aime.2023.100128
L. Sprave and A. Menzel.
A large strain anisotropic ductile damage model - Effective driving forces and gradient-enhancement of damage vs. plasticity.
Comput. Methods Appl. Mech. Engrg., 416:116284, 2023.
doi:10.1016/j.cma.2023.116284
T. Bartel, M. Harnisch B. Schweizer, and A. Menzel.
A data-driven approach for plasticity using history surrogates: Theory and application in the context of truss structures.
Comput. Methods Appl. Mech. Engrg. 414:116138, 2023.
doi: 10.1016/j.cma.2023.116138
M. Mucha, L. Rose, B. Wislo, A. Menzel, and J. Pamin.
Experiments and numerical simulations of Lueders bands and Portevin-Le Chatelier effect in alluminum alloy AW5083.
Arch. Mech., 75(3):301-336, 2023.
doi:10.24423/aom.4204
D. Güzel, T. Kaiser, and A. Menzel.
A thermo-electro-mechanically coupled cohesive zone formulation for predicting interfacial damage.
Euro. J. Mech. A/Solids, 99:104935, 2023.
doi:10.1016/j.euromechsol.2023.104935
B. Wcislo, J. Pamin, L. Rose, and A. Menzel.
On spatial vs. referential isotropic Fouriers law in finite deformation thermomechanics.
Eng. Transactions, 71(1):111-140, 2023.
doi:10.24423/EngTrans.2460.20230214
T. Bartel, M. Harnisch, A. Menzel, and B. Schweizer.
Aspects of accuracy and uniqueness of solutions in data-driven mechanics.
Proc. Appl. Math. Mech., 22(1):e202200206, 2023.
doi:10.1002/pamm.202200206
T. Furlan, T. Tsagkir Dereli, N. Schmidt, D. Biermann, and A. Menzel.
Application of the coupled Eulerian Lagrangian method to the prediction of single-grain cutting forces in grinding.
Proc. Appl. Math. Mech., 22(1):e202200123, 2023.
doi:10.1002/pamm.202200123
C. Witt, T. Kaiser, and A. Menzel.
Modeling and numerical simulation of remodelling processes in cortical bone: An IGA approach to flexoelectricity-induced osteocyte apoptosis and subsequent bone cell diffusion.
J. Mech. Phys. Solids, 173:105194, 2023.
doi:10.1016/j.jmps.2022.105194
2022
I. Noll, L. Koppka, T. Bartel, and A. Menzel.
A micromechanically motivated multiscale approach for residual distortion in laser powder bed fusion processes.
Additive Manufacturing, 60(Part B):103277, 2022.
doi:10.1016/j.addma.2022.103277
R. Schulte, C. Karca, R. Ostwald, and A. Menzel.
Machine learning-assisted parameter identification for constitutive models based on concatenated loading path sequences.
Euro. J. Mech. A/Solids, 98:104854, 2023.
doi:10.1016/j.euromechsol.2022.104854
C. Hergl, C. Witt, B. Nsonga, A. Menzel, and G. Scheuermann.
Electromechanical coupling in electroactive polymers - a visual analysis of a third-order tensor field.
IEEE Trans. Vis. Comput. Graph., 29(12):5357-5371, 2023. supplemental material 10.1109/TVCG.2022.3209328/mm1
doi:10.1109/TVCG.2022.3209328
T. Kaiser, G. Dehm, C. Kirchlechner, A. Menzel, and H. Bishara.
Probing porosity in metals by electrical conductivity: Nanoscale experiments and multiscale simulations.
Euro. J. Mech. A/Solids, 97:104777, 2023.
doi:10.1016/j.euromechsol.2022.104777
A. Menzel and C. Witt.
Extremal states and coupling properties in electroelasticity.
Phil. Trans. R. Soc. A, 380:20210330, 2022.
doi:10.1098/rsta.2021.0330
L. Rose and A. Menzel.
On the determination of thermal boundary conditions for parameter identifications of thermo-mechanically coupled material models.
GAMM-Mitteilungen, 45(3-4), 2022.
doi:10.1002/gamm.202200010
A. Schowtjak, R. Schulte, T. Clausmeyer, R. Ostwald, A.E. Tekkaya, and A. Menzel.
ADAPT - a diversely applicable parameter identification tool: overview and full-field application examples.
Int. J. Mech. Sci, 213:106840, 2022.
doi:10.1016/j.ijmecsci.2021.106840
P. Oppermann, R. Denzer, and A. Menzel.
A thermo-viscoplasticity model for metals over wide temperature ranges - application to case hardening steel.
Comput. Mech, 69:541-563, 2022.
doi:10.1007/s00466-021-02103-4
2021
I. Noll, T. Bartel, and A. Menzel.
On the incorporation of a micromechanical material model into the inherent strain method - application to the modeling of selective laser melting.
GAMM-Mitteilungen, 44(3):e202100015, 2021.
doi:10.1002/gamm.202100015
T. Kaiser, M.J. Cordill, C. Kirchlechner, and A. Menzel.
Electrical and mechanical behaviour of metal thin films with deformation-induced cracks predicted by computational homogenization.
Int. J. Fracture, 231:223-242, 2021.
doi:10.1007/s10704-021-00582-3
T. Bartel, G.-L. Geuken, and A. Menzel.
A thermodynamically consistent modeling framework for strongly time-dependent bainitic phase transitions.
Int. J. Solids Struct, 232:111172, 2021.
doi:10.1016/j.ijsolstr.2021.111172
T.T. Dereli, N. Schmidt, T. Furlan, R. Holtermann, D. Biermann, and A. Menzel.
Simulation based prediction of compliance induced shape deviations in Internal Traverse Grinding.
J. Manufact. Mat. Processing, 5(2):60, 2021.
doi:10.3390/jmmp5020060
K.A. Meyer and A. Menzel.
A distortional hardening model for finite plasticity.
Int. J. Solids Struct, 232:111055, 2021.
doi:10.1016/j.ijsolstr.2021.111055
T. Kaiser and A. Menzel.
A finite deformation electro-mechanically coupled computational multiscale formulation for electrical conductors.
Acta Mech, 232:3939-3956, 2021.
doi:10.1007/s00707-021-03005-5
T. Kaiser and A. Menzel.
Fundamentals of electro-mechanically coupled cohesive zone formulations for electrical conductors.
Comput. Mech, 68:51-67, 2021.
doi:10.1007/s00466-021-02019-z
N. Waschinsky, F.-J. Barthold, and A. Menzel.
Structural optimization of diffusion driven degradation processes.
Struct. Multidisc. Optim, 64:889-903, 2021.
doi:10.1007/s00158-021-02900-8
C. Witt, T. Kaiser, and A. Menzel. A
A finite deformation isogeometric finite element approach to fiber-reinforced composites with fiber bending stiffness.
J. Eng. Math, 128:15, 2021.
doi:10.1007/s10665-021-10117-3
T. Bartel, B. Kiefer, and A. Menzel.
An energy-relaxation-based framework for the modeling of magnetic shape memory alloys - Simulation of three-dimensional effects under homogeneous loading conditions.
Int. J. Solids Struct, 208-209:221-234, 2021.
doi:10.1016/j.ijsolstr.2020.10.024
T. Kaiser and A. Menzel.
An electrom-mechanically coupled computational multiscale formulation for electrical conductors.
Arch. Appl. Mech. 91:1509-1526, 2021
doi:10.1007/s00419-020-01837-6
L. Rose and A. Menzel.
Identification of thermal material parameters for thermomechanically coupled material models.
Meccanica, 56(2):393-416, 2021.
doi:10.1007/s11012-020-01267-2
T. Kaiser, S. Forest, and A. Menzel.
A finite element implementation of the stress gradient theory.
Meccanica, 56:1109-1128, 2021.
doi:10.1007/s11012-020-01266-3
C. Witt, T. Kaiser, and A. Menzel.
An isogeometric finite element approach to fibrereinforced composites with fiber bending stiffness.
Arch. Appl. Mech. 91:643-672, 2021.
doi:10.1007/s00419-020-01754-8
2020
M. Schewe, H. Wilbuer, and A. Menzel.
Simulation of wear and effective friction properties of microstructured surfaces.
Wear, 464-465:203491, 2020.
doi:10.1016/j.wear.2020.203491
I. Noll, T. Bartel, and A. Menzel.
A computational phase transformation model for Selective Laser Melting processes.
Comput. Mech, 66:1321-1342, 2020.
doi:10.1007/s00466-020-01903-4
L. Sprave and A. Menzel.
A large strain gradient-enhanced ductile damage model: finite element formulation, experiment and parameter identification.
Acta Mech, 231(12):5159-5192, 2020
doi:10.1007/s00707-020-02786-5
R. Schulte, R. Ostwald, and A. Menzel.
Gradient-enhanced modeling of damage for rate-dependent material behavior - a parameter identification framework.
Materials, 13(14):3156, 2020.
doi:10.3390/ma13143156
R. Penta, H. Dehghani, I. Noll, A. Menzel, and J. Merodio.
The role of microscale solid matrix compressibility on the mechanical behavior of poroelastic materials.
Euro. J. Mech. A/Solids, 83:103996, 2020.
doi:10.1016/j.euromechsol.2020.103996
F. Guhr, L. Sprave, F.-J. Barthold, and A. Menzel.
Computational shape optimization for a gradient-enhanced continuum damage model.
Comput. Mech, 65:1105-1124, 2020.
doi:10.1007/s00466-019-01810-3
L. Sprave, A. Schowtjak, R. Meya, T. Clausmeyer, A.E. Tekkaya, and A. Menzel.
On mesh dependencies in finite-element-based damage prediction: Application to sheet metal bending.
Prod. Eng, 14:123-134, 2020.
doi:10.1007/s11740-019-00937-9
L. Rose and A. Menzel.
Optimization based material parameter identification using full field displacement and temperature measurements.
Mech. Mat, 145:103292, 2020. erratum, 151: 103630, 10.1016/j.mechmat.2020.103630.
doi:10.1016/j.mechmat.2019.103292
T. Kaiser, J. Lu, A. Menzel, and P. Papadopoulos.
A covariant formulation of finite plasticity with plasticity-induced evolution of anisotropy: modeling, algorithmics, simulation, and comparison to experiments.
Int. J. Solids Struct, 185-186:116-142, 2020.
doi:10.1016/j.ijsolstr.2019.08.005
T. Bartel, B. Kiefer, K. Buckmann, and A. Menzel.
An energy-relaxation-based framework for the modeling of magnetic shape memory alloys - simulation of key response features under homogeneous loading conditions.
Int. J. Solids Struct, 182-183:162-178, 2020.
doi:10.1016/j.ijsolstr.2019.07.016
2019
T. Kaiser and A. Menzel.
A dislocation density tensor-based crystal plasticity framework.
J. Mech. Phys. Solids, 131:276-302, 2019.
doi:10.1016/j.jmps.2019.05.019
R. Ostwald, E. Kuhl, and A. Menzel.
On the implementation of finite deformation gradient-enhanced damage models.
Comput. Mech, 64(3):847-877, 2019.
doi:10.1007/s00466-019-01684-5
T. Bartel, I. Guschke, and A. Menzel.
Towards the simulation of Selective Laser Melting processes via phase transformation models.
Comput. Math Appl, 78(7), 2019.
doi:10.1016/j.camwa.2018.08.032
K. Buckmann, B. Kiefer, T. Bartel, and A. Menzel.
Simulation of magnetized microstructure evolution based on a micromagnetics-inspired FE-framework: Application to magnetic shape memory behavior.
Arch. Appl. Mech., 89(6):1085-1102, 2019
doi:10.1007/s00419-018-1482-7
T. Bartel, R. Schulte, A. Menzel, B. Kiefer, and B. Svendsen.
Investigations on enhanced Fischer-Burmeister NCP functions - application to a rate-dependent model for ferroelectrics.
Arch. Appl. Mech, 89(6):995-1010, 2019.
doi:10.1007/s00419-018-1466-7
R. Berthelsen and A. Menzel.
Computational homogenization of thermo-viscoplastic composites: Large strain formulation and weak micro-periodicity.
Comput. Methods Appl. Mech. Engrg., 348:575-603, 2019.
doi:10.1016/j.cma.2018.12.032
T. Kaiser and A. Menzel.
An incompatibility tensor-based gradient plasticity formulation - theory and numerics.
Comput. Methods Appl. Mech. Engrg., 345:671-700, 2019.
doi:10.1016/j.cma.2018.11.013
2018
R. Brighenti, A. Menzel, and F.J. Vernerey.
A physics-based micromechanical modelfor electroactive visco-ealstic polymers
J. Intel. Mat. Sys. Struct, 29(14):2902-2918, 2018.
doi:10.1177/1045389X18781036
B. Kiefer, T. Waffenschmidt, L. Sprave, and A. Menzel.
A gradient-enhanced damage model coupled to plasticity - multi-surface formulation and algorithmic concepts.
Int. J. Damage Mechanics, 27(2):253-295, 2018.
doi:10.1177/1056789516676306
B. Wcislo, J. Pamin, K. Kowalczyk-Gajewska, and A. Menzel.
Numerical analysis of ellipticity condition for large strain plasticity.
AIP Conference Proceedings, 1922:140008, 2018.
doi:10.1063/1.5019150
D.J. Hartl, B. Kiefer, R. Schulte, and A. Menzel.
Computationally-efficient modeling of inelastic single crystal responses via anisotropic yield surfaces: applications to shape memory alloys.
Int. J. Solids Struct, 136-137:38-59, 2018.
doi:10.1016/j.ijsolstr.2017.12.002
D.K. Dusthakar, A. Menzel, and B. Svendsen.
Laminate-based modeling of single and polycrystalline ferroelectric materials - application to tetragonal barium titanate.
Mech. Mat., 117:235-254, 2018.
doi:10.1016/j.mechmat.2017.10.005
2017
R. Berthelsen, R. Denzer, P. Oppermann, and A. Menzel.
Computational homogenization for thermoviscoplasticity - application to thermally sprayed coatings.
Comput. Mech, 60:739-766, 2017.
doi:10.1007/s00466-017-1436-x
T. Asmanoglo and A. Menzel.
A finite deformation continuum modeling framework for curvature effects in fiber-reinforced nanocomposites.
J. Mech. Phys. Solids, 107:411-432, 2017.
doi:10.1016/j.jmps.2017.06.012
C. Polindara, T. Waffenschmidt, and A. Menzel.
A computational framework for modeling damage-induced softening in fiber-reinforced materials - Application to balloon angioplasty.
Int. J. Solids Struct, 118-119:235-256, 2017.
doi:10.1016/j.ijsolstr.2017.02.010
T. Asmanoglo and A. Menzel.
Fiber-reinforced composites with fiber-bending stiffness under azimuthal shear - comparison of simulation results with analytical solutions.
Int. J. Non-Linear Mechanics, 91:128-139, 2017.
doi:10.1016/j.ijnonlinmec.2017.01.001
T. Asmanoglo and A. Menzel.
A multi-field finite element approach for the modeling of fiber-reinforced composites with fiber-bending stiffness.
Comput. Methods Appl. Mech. Engrg., 317:1037-1067, 2017.
doi:10.1016/j.cma.2017.01.003
S. Thylander, A. Menzel, M. Ristinmaa, S. Hall, and J. Engqvist.
Electroviscoelastic response of an acrylic elastomer analyzed by digital image correlation.
Smart Mater. Struct, 26(8):085021, 2017.
doi:10.1088/1361-665x/aa7255
S. Thylander, A. Menzel, and M. Ristinmaa.
A non-affine electro-viscoelastic microsphere model for dielectric elastomers: application to VHB 4910 based actuators.
J. Intel. Mat. Sys. Struct, 28(5):627-639, 2017.
doi:10.1177/1045389X16651157
T. Bartel, M. Osman, and A. Menzel.
A phenomenological model for the simulation of functional fatigue in shape memory alloy wires.
Meccanica, 52:973-988, 2017.
doi:10.1007/s11012-016-0419-x
2016
T. Bartel and A. Menzel.
Modeling and simulation of cyclic thermomechanical behavior of NiTi wires using a weak discontinuity approach.
Int. J. Fracture, 202(2):281-293, 2016. erratum, 202(2): 295, 10.1007/s10704-016-0169-8.
doi:10.1007/s10704-016-0156-0
S. Thylander, A. Menzel, and M. Ristinmaa.
Towards control of viscous effects in acrylic-based actuator applications.
Smart Mater. Struct, 25:095034, 2016.
doi:10.1088/0964-1726/25/9/095034
R. Berthelsen, H. Wilbuer, R. Holtermann, and A. Menzel.
Computational modeling of wear - application to structured surfaces of elastoplastic tools.
GAMM-Mitteilungen, 39(2):210-228, 2016.
doi:10.1002/gamm.201610013
R. Holtermann, S. Schumann, A. Zabel, D. Biermann, and A. Menzel.
Numerical determination of process values influencing the surface integrity in grinding.
Proc. CIRP, 45:39-42, 2016.
doi:10.1016/j.procir.2016.02.072
D. Biermann, R. Holtermann, A. Menzel, and S. Schumann.
Modeling and simulation of thermal effects in internal traverse grinding of hardened bearing steel.
CIRP Annals - Manufacturing Technology, 65(1):321-324, 2016.
doi:10.1016/j.cirp.2016.04.005
N. Cohen, A. Menzel, and G. deBotton.
Towards a physics-based multiscale modeling of the electro-mechanical coupling in electro-active polymers.
Proc. Roy. Soc. London A, 472:20150462, 2016.
doi:10.1098/rspa.2015.0462
K. Haldar, B. Kiefer, and A. Menzel.
Finite element simulation of rate-dependent magneto-active polymer response.
Smart Mater. Struct, 25:104003, 2016.
doi:10.1088/0964-1726/25/10/104003
C. Polindara, T. Waffenschmidt, and A. Menzel.
Simulation of balloon angioplasty in residually stressed blood vessels - application of a gradient-enhanced continuum damage model.
Biomechanics, 49(12):2341-2348, 2016.
doi:10.1016/j.jbiomech.2016.01.037
S. Maniprakash, A. Arockiarajan, and A. Menzel.
A multi-surface model for ferroelectric ceramics - application to cyclic electric loading with changing maximum amplitude.
Phil. Mag., 96(13):1263-1284, 2016.
doi:10.1080/14786435.2016.1161861
T. Waffenschmidt, M. Cilla, P. Sáez, M.M. Pérez, A. Menzel, and E. Pena.
Towards the modeling of aging and atherosclerosis in arteries using apoe-/- mice aortas.
J. Biomechanics, 49(12):2390-2397, 2016.
doi:10.1016/j.jbiomech.2016.01.043
S. Maniprakash, R. Jayendiran, A. Menzel, and A. Arockiarajan.
Experimental investigation, modeling and simulation of rate-dependent response of 1-3 ferroelectric composites.
Mech. Mat, 94:91-105, 2016.
doi:10.1016/j.mechmat.2015.11.018
R. Berthelsen, D. Tomath, R. Denzer, and A. Menzel.
Finite element simulation of coating-induced heat transfer - application to thermal spraying processes.
Meccanica, 51:291-307, 2016.
doi:10.1007/s11012-015-0236-7
E. Bortot, R. Denzer, A. Menzel, and M. Gei.
Analysis of viscoelastic soft dielectric elastomer generators operating in an electrical circuit.
Int. J. Solids Struct, 78-79:205-215, 2016.
doi:10.1016/j.ijsolstr.2015.06.004
2015
R. Holtermann, A. Menzel, S. Schumann, D. Biermann, T. Siebrecht, and P. Kersting.
Modeling and simulation of internal traverse grinding: bridging meso- and macro-scale simulations.
Prod. Eng, 9:451-463, 2015.
doi:10.1007/s11740-015-0613-z
V. Schulze, E. Uhlmann, R. Mahnken, A. Menzel, D. Biermann, A. Zabel, P. Bollig, I.M. Ivanov, C. Cheng, R. Holtermann, and T. Bartel.
Evaluation of different approaches for modeling phase transformations in machining simulation.
Prod. Eng, 9:437-449, 2015.
doi:10.1007/s11740-015-0618-7
E.A. Peraza Hernandeza, B. Kiefer, D.J. Hartl, A. Menzel, and D.C. Lagoudas.
Analytical investigation of structurally stable configurations in shape memory alloyactuated plates.
Int. J. Solids Struct, 69-70:442-458, 2015.
doi:10.1016/j.ijsolstr.2015.05.007
R. Ostwald, T. Bartel, and A. Menzel.
An energy-barrier-based computational micro-sphere model for phase-transformations interacting with plasticity.
Comput. Methods Appl. Mech. Engrg., 293:232-265, 2015.
doi:10.1016/j.cma.2015.04.008
C. Valero, E. Javierre, J.M. Garcia-Aznar, M.J. G'omez-Benito, and A. Menzel.
Modeling of anisotropic wound healing.
J. Mech. Phys. Solids, 79:80-91, 2015.
doi:10.1016/j.jmps.2015.03.009
S. Schumann, T. Siebrecht, P. Kersting, D. Biermann, R. Holtermann, and A. Menzel.
Determination of the thermal load distribution in internal traverse grinding using a geometric-kinematic simulation.
Proc. CIRP, 31:322-327, 2015.
doi:10.1016/j.procir.2015.03.020
A. Ask, A. Menzel, and M. Ristinmaa.
Modeling of viscoelastic dielectric elastomers with deformation dependent electric properties.
Proc. IUTAM, 12:134-144, 2015.
doi:10.1016/j.piutam.2014.12.015
D.K. Dusthakar, A. Menzel, and B. Svendsen.
Comparison of phenomenological and laminate-based models for rate-dependent switching in ferroelectric continua.
GAMM Communications, 38(1):147-170, 2015.
doi:10.1002/gamm.201510008
T. Bartel, B. Kiefer, K. Buckmann, and A. Menzel.
A kinematically-enhanced relaxation scheme for the modeling of displacive phase transformations.
J. Intel. Mat. Sys. Struct, 26(6):701-717, 2015.
doi:10.1177/1045389X14557507
C. Valero, E. Javierre, J.M. Garcia-Aznar, A. Menzel, and M.J. Gómez-Benito.
Challenges in the modeling of wound healing mechanisms in soft biological tissues.
Ann. Biomed. Eng, 43(7):1654-1665, 2015.
doi:10.1007/s10439-014-1200-8
J. Kaliappan and A. Menzel.
Modeling of non-linear switching effects in piezoceramics - A three-dimensional polygonal finite element based approach applied to oligo-crystals.
J. Intel. Mat. Sys. Struct, 26(17):2322-2337, 2015.
doi:10.1177/1045389X14554135
2014
R. Berthelsen, T. Wiederkehr, R. Denzer, A. Menzel, and H. Müller.
Efficient simulation of nonlinear heat transfer during thermal spraying of complex workpieces.
World J. Mech., 4:289-301, 2014.
doi:10.4236/wjm.2014.49029
R. Berthelsen, T. Wiederkehr, R. Denzer, A. Menzel, and H. Müller.
Efficient simulation of nonlinear heat transfer during thermal spraying of complex workpieces.
World J. Mech., 4:289-301, 2014.
doi:10.4236/wjm.2014.49029
S. Göktepe, A. Menzel, and E. Kuhl.
The generalized Hill model: a kinematic approach towards active muscle contraction.
J. Mech. Phys. Solids, 72:20-39, 2014.
doi:10.1016/j.jmps.2014.07.015
R. Denzer and A. Menzel.
Configurational forces for quasi-incompressible large strain electro-viscoelasticity - application to fracture mechanics.
Euro. J. Mech. A/Solids, 48:3-15, 2014.
doi:10.1016/j.ijsolstr.2010.04.032
R. Ostwald, M. Tiffe, T. Bartel, A. Zabel, A. Menzel, and D. Biermann.
Towards the multi-scale simulation of martensitic phase-transformations: an efficient post-processing approach applied to turning processes
J. Mat. Processing Tech, 214(8):1516-1523, 2014.
doi:10.1016/j.jmatprotec.2014.02.022
T. Waffenschmidt, C. Polindara, A. Menzel, and S. Blanco.
A gradient-enhanced large-deformation continuum damage model for fiber-reinforced materials.
Comput. Methods Appl. Mech. Engrg., 268:801-842, 2014.
doi:10.1016/j.cma.2013.10.013
T. Waffenschmidt and A. Menzel.
Extremal states of energy of a double-layered thick-walled tube - application to residually stressed arteries.
J. Mech. Behavior Biomedical Mat, 29:635-654, 2014.
doi:10.1016/j.jmbbm.2013.05.023
R. Ostwald, T. Bartel, and A. Menzel.
A Gibbs-energy-barrier-based computational micro-sphere model for the simulation of phase-transformations.
Int. J. Numer. Methods Engng, 97:851-877, 2014.
doi:10.1002/nme.4601
2013
R. Holtermann, S. Schumann, A. Menzel, and D. Biermann.
Modeling, simulation and experimental investigation of chip formation in internal traverse grinding.
Prod. Eng. Res. Devel., 7(2):251-263, 2013.
doi:10.1007/s11740-013-0449-3
A. Ask, R. Denzer, A. Menzel, and M. Ristinmaa.
Inverse-motion-based form finding for quasi-incompressible finite electro-elasticity.
Int. J. Numer. Methods Engng, 94(6):554-572, 2013.
doi:10.1002/nme.4462
2012
A. Menzel and E. Kuhl.
Frontiers in growth and remodeling.
Mech. Res. Comm. 42:1-14, 2012.
doi:10.1016/j.mechrescom.2012.02.007
B. Kiefer, T. Bartel, and A. Menzel.
Implementation of numerical integration schemes for the simulation of magnetic SMA constitutive response.
Smart Mater. Struct, 21(9):094007, 2012.
doi:10.1088/0964-1726/21/9/094007
S. Thylander, A. Menzel, and M. Ristinmaa.
An electromechanically coupled microsphere framework - application to the finite element analysis of electrostrictive polymers.
Smart Mater. Struct, 21(9):094008, 2012.
doi:10.1088/0964-1726/21/9/094008
J. Kaliappan and A. Menzel.
Voronoi-based three-dimensional polygonal finite elements for electromechanical problems.
Comput. Mater. Sci, 64:66-70, 2012.
doi:10.1016/j.commatsci.2012.02.049
K. Jayabal and A. Menzel.
Polygonal finite elements for three-dimensional Voronoi-cell-based discretizations.
Euro. J. Comput. Mech, 21(1-2):92-102, 2012.
doi:10.1080/17797179.2012.702432
T. Waffenschmidt and A. Menzel.
Application of an anisotropic growth and remodeling formulation to computational structural design.
Mech. Res. Comm., 42:77-86, 2012.
doi:10.1016/j.mechrescom.2011.12.004
R. Ostwald, T. Bartel, and A. Menzel.
Phase-transformations interacting with plasticity - a micro-sphere model applied to TRIP steel.
Comput. Mater. Sci, 64:12-16, 2012.
doi:10.1016/j.commatsci.2012.05.015
T. Waffenschmidt, A. Menzel, and E. Kuhl.
Anisotropic density growth of bone - a computational micro-sphere approach.
Int. J. Solids Struct, 49(14):1928-1946, 2012.
doi:10.1016/j.ijsolstr.2012.03.035
A. Ask, A. Menzel, and M. Ristinmaa.
Electrostriction in electro-viscoelastic polymers.
Mech. Mat., 50:9-21, 2012.
doi:10.1016/j.mechmat.2012.01.009
A. Ask, A. Menzel, and M. Ristinmaa.
Phenomenological modeling of viscous electrostrictive polymers.
Int. J. Non-Linear Mechanics, 47(2):156-165, 2012.
doi:10.1016/j.ijnonlinmec.2011.03.020
T. Bartel and A. Menzel.
Partially relaxed energy potentials for the modeling of microstructures - application to shape memory alloys.
GAMM-Mitteilungen, 35(1):57-72, 2012.
doi:10.1002/gamm.201210005
2011
D. Biermann, A. Menzel, T. Bartel, F. Höhne, R. Holtermann, R. Ostwald, B. Sieben, M. Tiffe, and A. Zabel.
Experimental and computational investigation of machining processes for functionally graded materials.
Prod. Eng, 19:22-27, 2011.
doi:10.1016/j.proeng.2011.11.074
K. Jayabal and A. Menzel.
Application of the polygonal finite elements to two-dimensional mechanical and electro-mechanically coupled problems.
Comput. Model. Eng. Sci, 73(2):183-207, 2011.
URL: https://doi.org/10.3970/cmes.2011.073.183
K. Jayabal, A. Menzel, A. Arockiarajan, and S.M. Srinivasan.
Micromechanical modeling of switching phenomena in polycrystalline piezoceramics. Application of a polygonal finite element approach.
Comput. Mech, 48:421-435, 2011.
doi:10.1007/s00466-011-0595-4
R. Ostwald, T. Bartel, and A. Menzel.
A one-dimensional computational model for the interaction of phase-transformations and plasticity.
Int. J. Struct. Changes Solids, 3(1):63-82, 2011.
URL: https://ijscs-ojs-tamu.tdl.org/ijscs/article/view/2330
T. Bartel, A. Menzel, and B. Svendsen.
Thermodynamic and relaxation-based modeling of the interaction between martensitic phase-transformations and plasticity.
J. Mech. Phys. Solids, 59(5):1004-1019, 2011.
doi:10.1016/j.jmps.2011.02.006
2010
R. Ostwald, T. Bartel, and A. Menzel.
A computational micro-sphere model applied to the micromechanical simulation of phase-transformations.
Z. angew. Math. Mech., 90(7-8):605-622, 2010.
doi:10.1002/zamm.200900390
A. Ask, A. Menzel, and M. Ristinmaa.
On the modeling of electro-viscoelastic response of electrostrictive polyurethane elastomers.
In IOP Conf. Ser. Mater. Sci. Eng, volume 10, page 012101, 2010.
doi:10.1088/1757-899X/10/1/012101
M. Harrysson, M. Ristinmaa, M. Wallin, and A. Menzel.
Framework for deformation induced anisotropy in glassy polymers.
Acta Mech, 211(3-4):195-213, 2010.
doi:10.1007/s00707-009-0232-x
2009
A. Menzel and B. Svendsen.
Two configurational approaches on the modeling of continuum dislocation inelasticity.
Int. J. Struct. Changes Solids, 1(1):61-72, 2009.
URL: https://ijscs-ojs-tamu.tdl.org/ijscs/article/view/2314
T. Bartel, A. Menzel, and B. Svendsen.
Enhanced micromechanical modeling of martensitic phase-transitions considering plastic deformations.
EDP Sciences, ESOMAT, 2009.
doi:10.1051/esomat/200903002
A. Menzel and T. Waffenschmidt.
A micro-sphere-based remodeling formulation for anisotropic biological tissues.
Phil. Trans. R. Soc. A, 367:3499-3523, 2009.
doi:10.1098/rsta.2009.0103
B. Svendsen, P. Neff, and A. Menzel.
On constitutive and configurational aspects of models for gradient continua with microstructure.
Z. angew. Math. Mech., 89(8):687-697, 2009.
doi:10.1002/zamm.200800171
V. Alastrué, M.A. Martinez, A. Menzel, and M. Doblaré
On the use of non-linear transformations for the evaluation of anisotropic rotationally symmetric directional integrals. Application to the stress analysis in fibred soft tissues.
Int. J. Numer. Methods Engng, 79(4):474-504, 2009.
doi:10.1002/nme.2577
V. Alastrué, M.A. Martínez, M. Doblaré, and A. Menzel.
Anisotropic micro-sphere-based finite elasticity applied to blood vessel modeling.
J. Mech. Phys. Solids, 57:178-203, 2009.
doi:10.1016/j.jmps.2008.09.005
2008
J. Utzinger, A. Menzel, and P. Steinmann.
Computational modeling of microcracking effects in polycrystalline piezoelectric ceramics.
GAMM-Mitteilungen, 31(2):151-165, 2008.
doi:10.1002/gamm.200890008
A. Menzel, J. Utzinger, and A. Arockiarajan.
Nonlinear piezoelectric effects - towards physics-based computational modeling of micro-cracking, fatigue, and switching.
AIP Conf. Proc. 1029(1):209-220, 2008.
doi:10.1063/1.2971985
J. Utzinger, P. Steinmann, and A. Menzel.
On the simulation of cohesive fatigue effects in grain boundaries of a piezoelectric mesostructure.
Int. J. Solids Struct, 45:4687-4708, 2008.
doi:10.1016/j.ijsolstr.2008.04.017
A. Menzel, M. Harrysson, and M. Ristinmaa.
Towards an orientation-distribution-based multi-scale approach for remodeling biological tissues.
Comput. Meth. Biomech. Biomed. Eng, 11(5):505-524, 2008.
doi:10.1080/10255840701771776
J. Utzinger, A. Menzel, P. Steinmann, and A. Benallal.
Aspects of bifurcation in an isotropic elastic continuum with orthotropic inelastic interface.
Euro. J. Mech. A/Solids, 27(4):532-547, 2008.
doi:10.1016/j.euromechsol.2007.11.001
A. Menzel, A. Arockiarajan, and S.M. Sivakumar.
Two models to simulate rate-dependent domain switching effects - application to ferroelastic polycrystalline ceramics.
Smart Mater. Struct, 17(1):015026, 2008.
doi:10.1088/0964-1726/17/01/015026
R. Mohr, A. Menzel, and P. Steinmann.
Galerkin-based mechanical integrators for finite elastodynamics formulated in principal stretches - pitfalls and remedies.
Comput. Methods Appl. Mech. Engrg., 197(49-50):4444-4466, 2008.
doi:10.1016/j.cma.2008.05.011
A. Arockiarajan, A. Menzel, and W. Seemann.
Constitutive modeling of rate-dependent domain switching effects in ferroelectric materials.
J. Electroceramics, 20:159-165, 2008.
doi:10.1007/s10832-007-9128-0
J. Utzinger, M. Bos, M. Floeck, A. Menzel, E. Kuhl, R. Renz, K. Friedrich, A.K. Schlarb, and P. Steinmann.
Computational modeling of thermal impact welded PEEK/steel single lap tensile specimens.
Comput. Mater. Sci, 41:287-296, 2008.
doi:10.1016/j.commatsci.2007.04.015
G. Himpel, A. Menzel, E. Kuhl, and P. Steinmann.
Time-dependent fibre reorientation of transversely isotropic continua - Finite element formulation and consistent linearization.
Int. J. Numer. Methods Engng, 73(10):1413-1433, 2008.
doi:10.1002/nme.2124
R. Mohr, A. Menzel, and P. Steinmann.
A consistent time FE-method for large strain elasto-plasto-dynamics.
Comput. Methods Appl. Mech. Engrg., 197(33-40):3024-3044, 2008.
doi:10.1016/j.cma.2008.02.002
2007
B. Kleuter, A. Menzel, and P. Steinmann.
Generalized parameter identification for finite viscoelasticity.
Comput. Methods Appl. Mech. Engrg., 196:3315-3334, 2007.
doi:10.1016/j.cma.2007.03.010
A. Arockiarajan and A. Menzel.
On the modeling of rate-dependent domain switching in piezoelectric materials under superimposed stresses.
Comput. Model. Eng. Sci, 10(1):55-72, 2007.
doi:10.3970/cmes.2007.020.055
A. Menzel and P. Steinmann.
On configurational forces in multiplicative elastoplasticity.
Int. J. Solids Struct, 44(13):4442-4471, 2007.
doi:10.1016/j.ijsolstr.2006.11.032
A. Arockiarajan, A. Menzel, B. Delibas, and W. Seemann.
Micromechanical modeling of switching effects in piezoelectric materials - a robust coupled finite element approach.
J. Intel. Mat. Sys. Struct, 18:983-999, 2007.
doi:10.1177/1045389X06074117
A. Menzel.
A fiber reorientation model for orthotropic multiplicative growth - Configurational driving stresses, kinematics-based reorientation, and algorithmic aspects.
Biomechan. Model. Mechanobiol, 6(5):303-320, 2007.
doi:doi:10.1007/s10237-006-0061-y
E. Kuhl, R. Maas, G. Himpel, and A. Menzel.
Computational modeling of arterial wall growth - Attempts towards a patient specific simulation based on computer tomography.
Biomechan. Model. Mechanobiol, 6(5):321-331, 2007.
doi:10.1007/s10237-006-0062-x
P. Herzenstiel, R.C.Y. Ching, S. Ricker, A. Menzel, P. Steinmann, and J.C. Aurich.
Interaction of process and machine during high performance grinding: towards a comprehensive simulation concept.
Int. J. Manufacturing Technology and Management, 12(1-3):155-170, 2007.
doi:10.1504/IJMTM.2007.014146
2006
A. Arockiarajan, A. Menzel, B. Delibas, and W. Seemann.
Computational modeling of rate-dependent domain switching in piezoelectric materials.
Euro. J. Mech. A/Solids, 25:950-964, 2006.
doi:10.1016/j.euromechsol.2006.01.006
A. Menzel.
Relations between material, intermediate and spatial generalized strain measures for anisotropic multiplicative inelasticity.
Acta Mech, 182:231-252, 2006.
doi:10.1007/s00707-005-0310-7
A. Arockiarajan, B. Delibas, A. Menzel, and W. Seemann.
Studies on rate dependent switching effects of piezoelectric materials using a finite element model.
Comput. Mater. Sci, 37:306-317, 2006.
doi:10.1016/j.commatsci.2005.08.008
E. Kuhl, A. Menzel, and K. Garikipati.
On the convexity of transversely isotropic chain network models.
Phil. Mag., 86(21-22):3241-3258, 2006.
doi:10.1080/14786430500080296
M. Ekh and A. Menzel.
Efficient iteration schemes for anisotropic hyperelastoplasticity.
Int. J. Numer. Methods Engng, 66:707-721, 2006
doi:10.1002/nme.1580
2005
A. Menzel and P. Steinmann.
A note on material forces in finite inelasticity.
Arch. Appl. Mech. 74:800-807, 2005.
doi:10.1007/s00419-005-0396-3
G. Johansson, A. Menzel, and K. Runesson.
Modeling of anisotropic inelasticity in pearlitic steel at large strains due to deformation induced substructure evolution.
Euro. J. Mech. A/Solids, 24(6):899-918, 2005.
doi:10.1016/j.euromechsol.2005.06.006
G. Himpel, E. Kuhl, A. Menzel, and P. Steinmann.
Computational modeling of isotropic multiplicative growth.
Comput. Model. Eng. Sci, 8(2):119-134, 2005
doi:10.3970/cmes.2005.008.119
A. Menzel.
Modeling of anisotropic growth in biological tissues - A new approach and computational aspects.
Biomechan. Model. Mechanobiol, 3(3):147-171, 2005.
doi:10.1007/s10237-004-0047-6
A. Menzel, R. Denzer, and P. Steinmann.
Material forces in computational single-slip crystal-plasticity
Comput. Mater. Sci, 32(3-4):446-454, 2005.
doi:10.1016/j.commatsci.2004.09.021
A. Menzel, M. Ekh, K. Runesson, and P. Steinmann.
A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage.
Int. J. Plasticity, 21:397-434, 2005.
doi:10.1016/j.ijplas.2003.12.006
2004
A. Menzel, R. Denzer, and P. Steinmann.
On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal-plasticity.
Comput. Methods Appl. Mech. Engrg., 193(48-51):5411-5428, 2004.
doi:10.1016/j.cma.2003.12.070
A. Menzel, P. Betsch, E. Stein, and P. Steinmann.
Concepts of Numerical Finite Rotations.
echnische Mechanik, 24(1):61-66, 2004.
URL: https://journals.ub.ovgu.de/index.php/techmech/article/view/915/892
2003
E. Kuhl, A. Menzel, and P. Steinmann.
Computational modeling of growth - A critical review, a classification of concepts and two new consistent approaches.
Comput. Mech, 32:71-88, 2003.
doi:10.1007/s00466-003-0463-y
M. Ekh, A. Menzel, K. Runesson, and P. Steinmann.
Anisotropic damage with the MCR effect coupled to plasticity.
Int. J. Engng. Sci, 41:1535-1551, 2003.
doi:10.1016/S0020-7225(03)00032-6
T. Liebe, A. Menzel, and P. Steinmann.
Theory and numerics of a thermodynamically consistent framework for geometrically non-linear gradient plasticity.
Int. J. Engng. Sci, 41:1603-1629, 2003.
doi:10.1016/S0020-7225(03)00030-2
A. Menzel and P. Steinmann.
Geometrically nonlinear anisotropic inelasticity based on fictitious configurations: Application to the coupling of continuum damage and multiplicative elasto-plasticity.
Int. J. Numer. Methods Engng, 56:2233-2266, 2003.
doi:10.1002/nme.662
A. Menzel and P. Steinmann.
On the spatial formulation of anisotropic multiplicative elasto-plasticity.
Comput. Methods Appl. Mech. Engrg., 192:3431-3470, 2003.
doi:10.1016/S0045-7825(03)00353-0
A. Menzel and P. Steinmann.
A view on anisotropic finite hyper-elasticity.
Euro. J. Mech. A/Solids, 22:71-87, 2003.
doi:10.1016/S0997-7538(02)01253-6
2002
A. Menzel, M. Ekh, P. Steinmann, and K. Runesson.
Anisotropic damage coupled to plasticity: Modeling based on the effective configuration concept.
Int. J. Numer. Methods Engng, 54(10):1409-1430, 2002.
doi:10.1002/nme.470
2001
A. Menzel and P. Steinmann.
On the theory and computation of anisotropic damage at large strains.
Revue Europ'eenne des 'El'ement Finis, 10(2-4):369-283, 2001.
doi:10.1080/12506559.2001.11869257
A. Menzel and P. Steinmann.
On the comparison of two strategies to formulate orthotropic hyperelasticity.
J. Elasticity, 62:171-201, 2001.
doi:10.1023/A:1012937501411
A. Menzel and P. Steinmann.
A theoretical and computational setting for anisotropic continuum damage mechanics at large strains.
Int. J. Solids Struct, 38(52):9505-9523, 2001.
doi:10.1016/S0020-7683(01)00136-6
2000
A. Menzel and P. Steinmann.
On the continuum formulation of higher gradient plasticity for single and polycrystals.
J. Mech. Phys. Solids, 48(8):1777-1796, 2000. Erratum 49(5):1179-1180, 2001.
doi:10.1016/S0022-5096(99)00024-1
doi:
2021
M. Schewe and A. Menzel.
Mechanism-based modeling of wear in sheet-bulk metal forming.
In M. Merklein, A.E. Tekkaya, and B.A. Behrens, editors, Sheet Bulk Metal Forming,
Lecture Notes in Production Engineering,
pages 434-457, Springer, 2021.
doi:10.1007/978-3-030-61902-2_19
N. Schmidt, T.T. Dereli, T. Furlan, R. Holtermann, D. Biermann, and A. Menzel.
Towards the prediction of compliance influences on shape deviations in Internal Traverse Grinding.
In B.A. Behrens, A. Brosius, W. Hintze, S. Ihlenfeldt, and J.P. Wulfsberg, editors, WGP 2020: Production at the leading edge of technology,
Lecture Notes in Production Engineering,
pages 304-314, Springer, 2021.
doi:10.1007/978-3-662-62138-7_31
2020
A. Menzel and L. Sprave.
Continuum damage mechanics - modeling and simulation.
In J. Merodio and R. Ogden, editors, Constitutive Modeling of Solid Continua,
volume 262 of Solid Mechanics and Its Applications,
pages 231-256, Springer, 2020.
doi:10.1007/978-3-030-31547-4_8
2018
R. Holtermann, S. Schumann, A. Menzel, and D. Biermann.
Modeling and simulation of internal traverse grinding - from micro-thermo-mechanical mechanisms to process models.
In D. Biermann and F. Hollmann, editors, Thermal Effects in Complex Machining Processes,
Lecture Notes in Production Engineering,
pages 369-403, Springer, 2018.
doi:10.1007/978-3-319-57120-1_16
2015
T. Waffenschmidt, C. Polindara and A. Menzel.
A gradient-enhanced continuum damage model for residually stressed fiber-reinforced materials at finite strains.
In T. Lenarz and P.~Wriggers, editors, Biomedical Technology,
volume 74 of Lecture Notes in Applied and Computational Mechanics,
pages 19-40, Springer, 2015.
doi:10.1007/978-3-319-10981-7_2
2020
T.T. Dereli, D. Biermann, A. Menzel, N. Schmidt, T. Furlan, and R. Holtermann.
Process optimization for internal cylindrical peel grinding.
VDI-Z Integrated Production, 162(3):25-27, 2020.
doi:10.37544/0042-1766-2020-03-25
2012
S. Schumann, E. Würz, D. Biermann, R. Holtermann, and A. Menzel.
Controlling heat input during high-performance internal cylindrical peel grinding - Determination of thermal workpiece loads using FEM.
VDI-Z Integrated Production, 154 (special I):31-33, 2012.
R. Holtermann, S. Schumann, A. Menzel, and D. Biermann.
Approaches to modeling and simulation of internal cylindrical grinding.
Diamond Business, 40(1):30-41, 2012.
2008
V. Alastrué, M.A. Martinez, M. Doblaré, and A. Menzel.
Blood vessel wall modeling. A micro-mechanical elasticity approach.
GACM report, 5:35-39, 2008.
1998
A. Menzel and P. Steinmann.
On the motivation and formulation of polycrystal plasticity of the higher gradient type.
In R. Mahnken, editor, Theoretische und numerische Methoden in der angewandten Mechanik mit Praxisbeispielen,
Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover,
Bericht-Nr. F 98/4, papes 73-80, 1998.
2007
A. Menzel.
Frontiers in Inelastic Continuum Mechanics.
Habilitation thesis, Chair of Applied Mechanics, TU Kaiserslautern, 2007.
https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-21274
2002
A. Menzel.
Modelling and Computation of Geometrically Nonlinear Anisotropic Inelasticity.
Doctoral thesis, Chair of Applied Mechanics, TU Kaiserslautern, 2002.
https://nbn-resolving.org/urn:nbn:de:bsz:386-kluedo-13890