Zum Inhalt
Fakultät Maschinenbau
Institutsleiter

Prof. Dr. Andreas Menzel

Portrait Andres Menzel © Andreas Menzel

Curriculum Vitae

since 10/2007 Professor, Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund, Germany
since 09/2007

Professor, Division of Solid Mechanics, Lund University, Sweden

10/2006-09/2007 Temporary Professor, Institute of Mechanics and Control Engineering,
Department of Mechanical Engineering, University of Siegen, Germany
05/2006 Habilitation (for Mechanics), TU Kaiserslautern, Germany
06/2002-09/2006 Research Associate, Chair of Applied Mechanics,
Department of Mechanical Engineering, TU Kaiserslautern, Germany
02/2002 Ph.D. in Engineering (Dr.-Ing.), TU Kaiserslautern, Germany
10/1997-05/2002 Research Assistant, Chair of Applied Mechanics,
Department of Mechanical Engineering, TU Kaiserslautern, Germany
06/1997-09/1997 Research Assistant, Institute of Structural and Computational Mechanics,
Department of Civil Engineering, Leibniz University Hannover, Germany
04/1997 Diploma degree (Dipl.-Ing.), Leibniz University Hannover, Germany
10/1992-04/1997 Civil Engineering, Leibniz University Hannover, Germany

Publications

I. Noll, T. Bartel, and A. Menzel.
A thermodynamically consistent phase transformation model for multiphase alloys – application to Ti6Al4V in laser powder bed fusion processes.
Comput. Mech., 2024.
doi:10.1007/s00466-024-02479-z

D. Güzel, T. Kaiser, and A. Menzel.
A computational multscale approach towards the modelling of microstructures with material interfaces in electrical conductors.
Math. Mech. Solids, page 1202721, 2024.
doi:10.1177/10812865231202721

C. Witt, T. Kaiser, and A. Menzel.
An IGA-FEA model for flexoelectricity-induced healing of microcracks in cortical bone.
Comput. Methods Appl. Mech. Engrg., 425:116919, 2024.
doi:10.1016/j.cma.2024.116919

T. Kaiser, N. von der Höh, and A. Menzel.
Computational multiscale modelling of material interfaces in electrical conductors.
J. Mech. Phys. Solids, 186:105601, 2024
doi:10.1016/j.jmps.2024.105601

L. Sobisch, T. Kaiser, T. Furlan, and A. Menzel.
A user material approach for the solution of multi-field problems in abaqus: Theoretical foundations, gradient-
enhanced damage mechanics and thermo-mechanical coupling.

Finite Elem. Anal. Des., 232:104105, 2024.
doi:10.1016/j.finel.2023.104105

M. Böddecker and A. Menzel.
A large strain thermoplasticity model including recovery, recrystallisation and grain size effects.
Proc. Appl. Math. Mech., 23(4):e202300282, 2023.
doi:10.1002/pamm.202300282

D. Güzel, T. Kaiser, L. Lücker, N. Baak, F. Walther, and A. Menzel.
Characterisation of damage by means of electrical measurements: Numerical predictions.
Proc. Appl. Math. Mech., 23(2):e202300013, 2023.
doi:10.1002/pamm.202300013

M. Böddecker, M.G.R. Faes, A. Menzel, and M.A. Valdebenito.
Effect of uncertaintyof material parameters on stress triaxiality and Lode angle in finite elasto-plasticity
– a variance-based global sensitivity analysis.

Adv. Ind. Manuf. Eng., 7:100128, 2023.
doi:10.1016/j.aime.2023.100128

L. Sprave and A. Menzel.
A large strain anisotropic ductile damage model – Effective driving forces and gradient-enhancement of damage vs. plasticity.
Comput. Methods Appl. Mech. Engrg., 416:116284, 2023.
doi:10.1016/j.cma.2023.116284

T. Bartel, M. Harnisch B. Schweizer, and A. Menzel.
A data-driven approach for plasticity using history surrogates: Theory and application in the context of truss structures.
Comput. Methods Appl. Mech. Engrg., 414:116138, 2023.
doi: 10.1016/j.cma.2023.116138

D. Güzel, T. Kaiser, and A. Menzel.
A thermo-electro-mechanically coupled cohesive zone formulation for predicting interfacial damage.
Euro. J. Mech. A/Solids, 99:104935, 2023.
doi:10.1016/j.euromechsol.2023.104935

B. Wcislo, J. Pamin, L. Rose, and A. Menzel.
On spatial vs. referential isotropic Fouriers law in finite deformation thermomechanics.
Eng. Transactions, 71(1):111–140, 2023.
doi:10.24423/EngTrans.2460.20230214

T. Bartel, M. Harnisch, A. Menzel, and B. Schweizer.
Aspects of accuracy and uniqueness of solutions in data-driven mechanics.
Proc. Appl. Math. Mech., 22(1):e202200206, 2023.
doi:10.1002/pamm.202200206

T. Furlan, T. Tsagkir Dereli, N. Schmidt, D. Biermann, and A. Menzel.
Application of the coupled eulerian lagrangian method to the prediction of single-grain cutting forces in grinding.
Proc. Appl. Math. Mech., 22(1):e202200123, 2023.
doi:10.1002/pamm.202200123

C. Witt, T. Kaiser, and A. Menzel.
Modelling and numerical simulation of remodelling processes in cortical bone: An IGA approach to flexoelectricity-induced osteo-
cyte apoptosis and subsequent bone cell diffusion.

Mech. Phys. Solids, 173:105194, 2023.
doi:10.1016/j.jmps.2022.105194

I. Noll, L. Koppka, T. Bartel, and A. Menzel.
A micromechanically motivated multiscale approach for residual distortion in laser powder bed fusion processes.
Additive Manufacturing, 60(Part B):103277, 2022.
doi:10.1016/j.addma.2022.103277

R. Schulte, C. Karca, R. Ostwald, and A. Menzel.
Machine learning-assisted parameter identification for constitutive models based on concatenated loading path sequences.
Euro. J. Mech. A/Solids, 98:104854, 2023.
doi:10.1016/j.euromechsol.2022.104854

C. Hergl, C. Witt, B. Nsonga, A. Menzel, and G. Scheuermann.
Electromechanical coupling in electroactive polymers – a visual analysis of a third-order tensor field.
IEEE Trans. Vis. Comput. Graph., 29(12):5357–5371, 2023. supplemental material 10.1109/TVCG.2022.3209328/mm1
doi:10.1109/TVCG.2022.3209328

T. Kaiser, G. Dehm, C. Kirchlechner, A. Menzel, and H. Bishara.
Probing porosity in metals by electrical conductivity: Nanoscale experiments and multiscale simulations.
Euro. J. Mech. A/Solids, 97:104777, 2023.
doi:10.1016/j.euromechsol.2022.104777

A. Menzel and C. Witt.
Extremal states and coupling properties in electroelasticity.
Phil. Trans. R. Soc. A, 380:20210330, 2022.
doi:10.1098/rsta.2021.0330

L. Rose and A. Menzel.
On the determination of thermal boundary conditions for parameter identifications of thermo-mechanically coupled material models.
GAMM–Mitteilungen, 45(3–4), 2022.
doi:10.1002/gamm.202200010

A. Schowtjak, R. Schulte, T. Clausmeyer, R. Ostwald, A.E. Tekkaya, and A. Menzel.
ADAPT – a diversely applicable parameter identification tool: overview and full-field application examples.
Int. J. Mech. Sci., 213:106840, 2022.
doi:10.1016/j.ijmecsci.2021.106840

P. Oppermann, R. Denzer, and A. Menzel.
A thermo-viscoplasticity model for metals over wide temperature ranges – application to case hardening steel.
Comput. Mech., 69:541–563, 2022.
doi:10.1007/s00466-021-02103-4

I. Noll, T. Bartel, and A. Menzel.
On the incorporation of a micromechanical material model into the inherent strain method – application to the modelling of selective laser melting.
GAMM–Mitteilungen, 44(3):e202100015, 2021.
doi:10.1002/gamm.202100015

T. Kaiser, M.J. Cordill, C. Kirchlechner, and A. Menzel.
Electrical and mechanical behaviour of metal thin films with deformation-induced cracks predicted by computational homogenisation.
Int. J. Fracture, 231:223–242, 2021.
doi:10.1007/s10704-021-00582-3

T. Bartel, G.-L. Geuken, and A. Menzel.
A thermodynamically consistent modelling framework for strongly time-dependent bainitic phase transitions.
Int. J. Solids Struct., 232:111172, 2021.
doi:10.1016/j.ijsolstr.2021.111172

T.T. Dereli, N. Schmidt, T. Furlan, R. Holtermann, D. Biermann, and A. Menzel.
Simulation based prediction of compliance induced shape deviations in Internal Traverse Grinding.
J. Manufact. Mat. Processing, 5(2):60, 2021.
doi:10.3390/jmmp5020060

K.A. Meyer and A. Menzel.
A distortional hardening model for finite plasticity.
Int. J. Solids Struct., 232:111055, 2021.
doi:10.1016/j.ijsolstr.2021.111055

T. Kaiser and A. Menzel.
A finite deformation electro-mechanically coupled computational multiscale formulation for electrical conductors.
Acta Mech., 232:3939–3956, 2021.
doi:10.1007/s00707-021-03005-5

T. Kaiser and A. Menzel.
Fundamentals of electro-mechanically coupled cohesive zone formulations for electrical conductors.
Comput. Mech., 68:51–67, 2021.
doi:10.1007/s00466-021-02019-z

N. Waschinsky, F.-J. Barthold, and A. Menzel.
Structural optimisation of diffusion driven degradation processes.
Struct. Multidisc. Optim., 64:889–903, 2021.
doi:10.1007/s00158-021-02900-8

C. Witt, T. Kaiser, and A. Menzel. A
A finite deformation isogeometric finite element approach to fibre-reinforced composites with fibre bending stiffness.
J. Eng. Math., 128:15, 2021.
doi:10.1007/s10665-021-10117-3

T. Bartel, B. Kiefer, and A. Menzel.
An energy-relaxation-based framework for the modeling of magnetic shape memory alloys – Simulation of three-dimensional effects under homogeneous loading conditions.
Int. J. Solids Struct., 208–209:221–234, 2021.
doi:10.1016/j.ijsolstr.2020.10.024

T. Kaiser and A. Menzel.
An electrom-mechanically coupled computational multiscale formulation for electrical conductors.
Arch. Appl. Mech., 91:1509–1526, 2021
doi:10.1007/s00419-020-01837-6

L. Rose and A. Menzel.
Identification of thermal material parameters for thermomechanically coupled material models.
Meccanica, 56(2):393–416, 2021.
doi:10.1007/s11012-020-01267-2

T. Kaiser, S. Forest, and A. Menzel.
A finite element implementation of the stress gradient theory.
Meccanica, 56:1109–1128, 2021.
doi:10.1007/s11012-020-01266-3

C. Witt, T. Kaiser, and A. Menzel.
An isogeometric finite element approach to fibrereinforced composites with fibre bending stiffness.
Arch. Appl. Mech., 91:643–672, 2021.
doi:10.1007/s00419-020-01754-8

M. Schewe, H. Wilbuer, and A. Menzel.
Simulation of wear and effective friction properties of microstructured surfaces.
Wear, 464–465:203491, 2020.
doi:10.1016/j.wear.2020.203491

I. Noll, T. Bartel, and A. Menzel.
A computational phase transformation model for Selective Laser Melting processes.
Comput. Mech., 66:1321–1342, 2020.
doi:10.1007/s00466-020-01903-4

L. Sprave and A. Menzel.
A large strain gradient-enhanced ductile damage model: finite element formulation, experiment and parameter identification.
Acta Mech., 231(12):5159–5192, 2020
doi:10.1007/s00707-020-02786-5

R. Schulte, R. Ostwald, and A. Menzel.
Gradient-enhanced modelling of damage for rate-dependent material behaviour – a parameter identification framework.
Materials, 13(14):3156, 2020.
doi:10.3390/ma13143156

R. Penta, H. Dehghani, I. Noll, A. Menzel, and J. Merodio.
The role of microscale solid matrix compressibility on the mechanical behaviour of poroelastic materials.
Euro. J. Mech. A/Solids, 83:103996, 2020.
doi:10.1016/j.euromechsol.2020.103996

F. Guhr, L. Sprave, F.-J. Barthold, and A. Menzel.
Computational shape optimisation for a gradient-enhanced continuum damage model.
Comput. Mech., 65:1105–1124, 2020.
doi:10.1007/s00466-019-01810-3

L. Sprave, A. Schowtjak, R. Meya, T. Clausmeyer, A.E. Tekkaya, and A. Menzel.
On mesh dependencies in finite-element-based damage prediction: Application to sheet metal bending.
Prod. Eng., 14:123–134, 2020.
doi:10.1007/s11740-019-00937-9

L. Rose and A. Menzel.
Optimisation based material parameter identification using full field displacement and temperature measurements.
Mech. Mat., 145:103292, 2020. Erratum, 151: 103630, 10.1016/j.mechmat.2020.103630.
doi:10.1016/j.mechmat.2019.103292

T. Kaiser, J. Lu, A. Menzel, and P. Papadopoulos.
A covariant formulation of finite plasticity with plasticity-induced evolution of anisotropy: modeling, algorithmics, simulation, and comparison to experiments
Int. J. Solids Struct., 185–186:116–142, 2020.
doi:10.1016/j.ijsolstr.2019.08.005

T. Bartel, B. Kiefer, K. Buckmann, and A. Menzel.
An energy-relaxation-based framework for the modelling of magnetic shape memory alloys – simulation of key response features under homogeneous loading conditions.
Int. J. Solids Struct., 182–183:162–178, 2020.
doi:10.1016/j.ijsolstr.2019.07.016

T. Kaiser and A. Menzel.
A dislocation density tensor-based crystal plasticity framework.
J. Mech. Phys. Solids, 131:276–302, 2019.
doi:10.1016/j.jmps.2019.05.019

R. Ostwald, E. Kuhl, and A. Menzel.
On the implementation of finite deformation gradient-enhanced damage models.
Comput. Mech., 64(3):847–877, 2019.
doi:10.1007/s00466-019-01684-5

T. Bartel, I. Guschke, and A. Menzel.
Towards the simulation of Selective Laser Melting processes via phase transformation models.
Comput. Math. Appl., 78(7), 2019.
doi:10.1016/j.camwa.2018.08.032

K. Buckmann, B. Kiefer, T. Bartel, and A. Menzel.
Simulation of magnetised microstructure evolution based on a micromagnetics-inspired FE-framework: Application to magnetic shape memory behaviour.
Arch. Appl. Mech., 89(6):1085–1102, 2019
doi:10.1007/s00419-018-1482-7

T. Bartel, R. Schulte, A. Menzel, B. Kiefer, and B. Svendsen.
Investigations on enhanced Fischer-Burmeister NCP functions – application to a rate-dependent model for ferroelectrics.
Arch. Appl. Mech., 89(6):995–1010, 2019.
doi:10.1007/s00419-018-1466-7

R. Berthelsen and A. Menzel.
Computational homogenisation of thermo-viscoplastic composites: Large strain formulation and weak micro-periodicity.
Comput. Methods Appl. Mech. Engrg., 348:575–603, 2019.
doi:10.1016/j.cma.2018.12.032

T. Kaiser and A. Menzel.
An incompatibility tensor-based gradient plasticity formulation – theory and numerics.
Comput. Methods Appl. Mech. Engrg., 345:671–700, 2019.
doi:10.1016/j.cma.2018.11.013

R. Brighenti, A. Menzel, and F.J. Vernerey.
A physics-based micromechanical modelfor electroactive visco-ealstic polymers
J. Intel. Mat. Sys. Struct., 29(14):2902–2918, 2018.
doi:10.1177/1045389X18781036

B. Kiefer, T. Waffenschmidt, L. Sprave, and A. Menzel.
A gradient-enhanced damage model coupled to plasticity – multi-surface formulation and algorithmic concepts.
Int. J. Damage Mechanics, 27(2):253–295, 2018.
doi:10.1177/1056789516676306

B. Wcislo, J. Pamin, K. Kowalczyk-Gajewska, and A. Menzel.
Numerical analysis of ellipticity condition for large strain plasticity.
AIP Conference Proceedings, 1922:140008, 2018.
doi:10.1063/1.5019150

D.J. Hartl, B. Kiefer, R. Schulte, and A. Menzel.
Computationally-efficient modeling of inelastic single crystal responses via anisotropic yield surfaces: applications to shape memory alloys.
Int. J. Solids Struct., 136–137:38–59, 2018.
doi:10.1016/j.ijsolstr.2017.12.002

D.K. Dusthakar, A. Menzel, and B. Svendsen.
Laminate-based modelling of single and polycrystalline ferroelectric materials – application to tetragonal barium titanate.
Mech. Mat., 117:235–254, 2018.
doi:10.1016/j.mechmat.2017.10.005

R. Berthelsen, R. Denzer, P. Oppermann, and A. Menzel.
Computational homogenisation for thermoviscoplasticity – application to thermally sprayed coatings.
Comput. Mech., 60:739–766, 2017.
doi:10.1007/s00466-017-1436-x

T. Asmanoglo and A. Menzel.
A finite deformation continuum modelling framework for curvature effects in fibre-reinforced nanocomposites.
J. Mech. Phys. Solids, 107:411–432, 2017.
doi:10.1016/j.jmps.2017.06.012

C. Polindara, T. Waffenschmidt, and A. Menzel.
A computational framework for modelling damage-induced softening in fibre-reinforced materials – Application to balloon angioplasty.
Int. J. Solids Struct., 118–119:235–256, 2017.
doi:10.1016/j.ijsolstr.2017.02.010

T. Asmanoglo and A. Menzel.
Fibre-reinforced composites with fibre-bending stiffness under azimuthal shear – comparison of simulation results with analytical solutions.
Int. J. Non–Linear Mechanics, 91:128–139, 2017.
doi:10.1016/j.ijnonlinmec.2017.01.001

T. Asmanoglo and A. Menzel.
A multi-field finite element approach for the modelling of fibre-reinforced composites with fibre-bending stiffness.
Comput. Methods Appl. Mech. Engrg., 317:1037–1067, 2017.
doi:10.1016/j.cma.2017.01.003

S. Thylander, A. Menzel, M. Ristinmaa, S. Hall, and J. Engqvist.
Electroviscoelastic response of an acrylic elastomer analysed by digital image correlation.
Smart Mater. Struct., 26(8):085021, 2017.
doi:10.1088/1361-665x/aa7255

S. Thylander, A. Menzel, and M. Ristinmaa.
A non-affine electro-viscoelastic microsphere model for dielectric elastomers: application to VHB 4910 based actuators.
J. Intel. Mat. Sys. Struct., 28(5):627–639, 2017.
doi:10.1177/1045389X16651157

T. Bartel, M. Osman, and A. Menzel.
A phenomenological model for the simulation of functional fatigue in shape memory alloy wires.
Meccanica, 52:973–988, 2017.
doi:10.1007/s11012-016-0419-x

T. Bartel and A. Menzel.
Modelling and simulation of cyclic thermomechanical behaviour of NiTi wires using a weak discontinuity approach.
Int. J. Fracture, 202(2):281–293, 2016. Erratum, 202(2): 295, 10.1007/s10704-016-0169-8.
doi:10.1007/s10704-016-0156-0

S. Thylander, A. Menzel, and M. Ristinmaa.
Towards control of viscous effects in acrylic-based actuator applications.
Smart Mater. Struct., 25:095034, 2016.
doi:10.1088/0964-1726/25/9/095034

R. Berthelsen, H. Wilbuer, R. Holtermann, and A. Menzel.
Computational modelling of wear – application to structured surfaces of elastoplastic tools.
GAMM–Mitteilungen, 39(2):210–228, 2016.
doi:10.1002/gamm.201610013

R. Holtermann, S. Schumann, A. Zabel, D. Biermann, and A. Menzel.
Numerical determination of process values influencing the surface integrity in grinding.
Proc. CIRP, 45:39–42, 2016.
doi:10.1016/j.procir.2016.02.072

D. Biermann, R. Holtermann, A. Menzel, and S. Schumann.
Modelling and simulation of thermal effects in internal traverse grinding of hardened bearing steel.
CIRP Annals - Manufacturing Technology, 65(1):321–324, 2016.
doi:10.1016/j.cirp.2016.04.005

N. Cohen, A. Menzel, and G. deBotton.
Towards a physics-based multiscale modelling of the electro-mechanical coupling in electro-active polymers.
Proc. Roy. Soc. London A, 472:20150462, 2016.
doi:10.1098/rspa.2015.0462

K. Haldar, B. Kiefer, and A. Menzel.
Finite element simulation of rate-dependent magneto-active polymer response.
Smart Mater. Struct., 25:104003, 2016.
doi:10.1088/0964-1726/25/10/104003

C. Polindara, T. Waffenschmidt, and A. Menzel.
Simulation of balloon angioplasty in residually stressed blood vessels – application of a gradient-enhanced continuum damage model.
Biomechanics, 49(12):2341–2348, 2016.
doi:10.1016/j.jbiomech.2016.01.037

S. Maniprakash, A. Arockiarajan, and A. Menzel.
A multi-surface model for ferroelectric ceramics – application to cyclic electric loading with changing maximum amplitude.
Phil. Mag., 96(13):1263–1284, 2016.
doi:10.1080/14786435.2016.1161861

T. Waffenschmidt, M. Cilla, P. S´aez, M.M. P´erez, A. Menzel, and E. Pena.
Towards the modelling of ageing and atherosclerosis in arteries using apoe−/− mice aortas.
J. Biomechanics, 49(12):2390–2397, 2016.
doi:10.1016/j.jbiomech.2016.01.043

S. Maniprakash, R. Jayendiran, A. Menzel, and A. Arockiarajan.
Experimental investigation, modelling and simulation of rate-dependent response of 1-3 ferroelectric composites.
Mech. Mat., 94:91–105, 2016.
doi:10.1016/j.mechmat.2015.11.018

R. Berthelsen, D. Tomath, R. Denzer, and A. Menzel.
Finite element simulation of coating-induced heat transfer – application to thermal spraying processes.
Meccanica, 51:291–307, 2016.
doi:10.1007/s11012-015-0236-7

E. Bortot, R. Denzer, A. Menzel, and M. Gei.
Analysis of viscoelastic soft dielectric elastomer generators operating in an electrical circuit.
Int. J. Solids Struct., 78-79:205–215, 2016.
doi:10.1016/j.ijsolstr.2015.06.004

R. Holtermann, A. Menzel, S. Schumann, D. Biermann, T. Siebrecht, and P. Kersting.
Modelling and simulation of internal traverse grinding: bridging meso- and macro-scale simulations.
Prod. Eng., 9:451–463, 2015.
doi:10.1007/s11740-015-0613-z

V. Schulze, E. Uhlmann, R. Mahnken, A. Menzel, D. Biermann, A. Zabel, P. Bollig, I.M. Ivanov, C. Cheng, R. Holtermann, and T. Bartel.
Evaluation of different approaches for modelling phase transformations in machining simulation.
Prod. Eng., 9:437–449, 2015.
doi:10.1007/s11740-015-0618-7

E.A. Peraza Hernandeza, B. Kiefer, D.J. Hartl, A. Menzel, and D.C. Lagoudas.
Analytical investigation of structurally stable configurations in shape memory alloyactuated plates.
Int. J. Solids Struct., 69–70:442–458, 2015.
doi:10.1016/j.ijsolstr.2015.05.007

R. Ostwald, T. Bartel, and A. Menzel.
An energy-barrier-based computational micro-sphere model for phase-transformations interacting with plasticity.
Comput. Methods Appl. Mech. Engrg., 293:232–265, 2015.
doi:10.1016/j.cma.2015.04.008

C. Valero, E. Javierre, J.M. Garcia-Aznar, M.J. G´omez-Benito, and A. Menzel.
Modeling of anisotropic wound healing.
J. Mech. Phys. Solids, 79:80–91, 2015.
doi:10.1016/j.jmps.2015.03.009

S. Schumann, T. Siebrecht, P. Kersting, D. Biermann, R. Holtermann, and A. Menzel.
Determination of the thermal load distribution in internal traverse grinding using a geometric-kinematic simulation.
Proc. CIRP, 31:322–327, 2015.
doi:10.1016/j.procir.2015.03.020

A. Ask, A. Menzel, and M. Ristinmaa.
Modelling of viscoelastic dielectric elastomers with deformation dependent electric properties.
Proc. IUTAM, 12:134–144, 2015.
doi:10.1016/j.piutam.2014.12.015

D.K. Dusthakar, A. Menzel, and B. Svendsen.
Comparison of phenomenological and laminate-based models for rate-dependent switching in ferroelectric continua.
GAMM–Mitteilungen, 38(1):147–170, 2015.
doi:10.1002/gamm.201510008

T. Bartel, B. Kiefer, K. Buckmann, and A. Menzel.
A kinematically-enhanced relaxation scheme for the modeling of displacive phase transformations.
J. Intel. Mat. Sys. Struct., 26(6):701–717, 2015.
doi:10.1177/1045389X14557507

C. Valero, E. Javierre, J.M. Garcia-Aznar, A. Menzel, and M.J. G´omez-Benito.
Challenges in the modeling of wound healing mechanisms in soft biological tissues.
Ann. Biomed. Eng., 43(7):1654–1665, 2015.
doi:10.1007/s10439-014-1200-8

J. Kaliappan and A. Menzel.
Modelling of non-linear switching effects in piezoceramics – A three-dimensional polygonal finite element based approach applied to oligo-crystals.
J. Intel. Mat. Sys. Struct., 26(17):2322–2337, 2015.
doi:10.1177/1045389X14554135

R. Berthelsen, T. Wiederkehr, R. Denzer, A. Menzel, and H. Müller.
Efficient simulation of nonlinear heat transfer during thermal spraying of complex workpieces.
World J. Mech., 4:289–301, 2014.
doi:10.4236/wjm.2014.49029

R. Berthelsen, T. Wiederkehr, R. Denzer, A. Menzel, and H. Müller.
Efficient simulation of nonlinear heat transfer during thermal spraying of complex workpieces.
World J. Mech., 4:289–301, 2014.
doi:10.4236/wjm.2014.49029

S. Göktepe, A. Menzel, and E. Kuhl.
The generalized Hill model: a kinematic approach towards active muscle contraction.
J. Mech. Phys. Solids, 72:20–39, 2014.
doi:10.1016/j.jmps.2014.07.015

R. Denzer and A. Menzel.
Configurational forces for quasi-incompressible large strain electro-viscoelasticity - application to fracture mechanics.
Euro. J. Mech. A/Solids, 48:3–15, 2014.
doi:10.1016/j.ijsolstr.2010.04.032

R. Ostwald, M. Tiffe, T. Bartel, A. Zabel, A. Menzel, and D. Biermann.
Towards the multi-scale simulation of martensitic phase-transformations: an efficient post-processing approach applied to turning processes
J. Mat. Processing Tech., 214(8):1516–1523, 2014.
doi:10.1016/j.jmatprotec.2014.02.022

T. Waffenschmidt, C. Polindara, A. Menzel, and S. Blanco.
A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials.
Comput. Methods Appl. Mech. Engrg., 268:801–842, 2014.
doi:10.1016/j.cma.2013.10.013

T. Waffenschmidt and A. Menzel.
Extremal states of energy of a double-layered thick-walled tube - application to residually stressed arteries.
J. Mech. Behavior Biomedical Mat., 29:635–654, 2014.
doi:10.1016/j.jmbbm.2013.05.023

R. Ostwald, T. Bartel, and A. Menzel.
A Gibbs-energy-barrier-based computational micro-sphere model for the simulation of phase-transformations.
Int. J. Numer. Methods Engng., 97:851–877, 2014.
doi:10.1002/nme.4601

R. Holtermann, S. Schumann, A. Menzel, and D. Biermann.
Modelling, simulation and experimental investigation of chip formation in internal traverse grinding.
Prod. Eng. Res. Devel., 7(2):251–263, 2013.
doi:10.1007/s11740-013-0449-3